A structural break test for extremal dependence in β-mixing random vectors

被引:13
|
作者
Hoga, Y. [1 ]
机构
[1] Univ Duisburg Essen, Fac Econ & Business Adm, Univ Str 12, D-45117 Essen, Germany
关键词
beta-mixing; Extremal dependence; Self-normalization; Structural break test; TAIL-DEPENDENCE; TIME; DIAGNOSTICS; COEFFICIENT; MODELS; POINT;
D O I
10.1093/biomet/asy030
中图分类号
Q [生物科学];
学科分类号
07 ; 0710 ; 09 ;
摘要
We derive a structural break test for extremal dependence in beta-mixing, possibly high-dimensional random vectors with either asymptotically dependent or asymptotically independent components. Existing tests require serially independent observations with asymptotically dependent components. To avoid estimating a long-run variance, we use self-normalization, which obviates the need to estimate the coefficient of tail dependence when components are asymptotically independent. Simulations show favourable empirical size and power of the test, which we apply to S&P 500 and DAX log-returns. We find evidence for one break in the coefficient of tail dependence for the upper and lower joint tail at the beginning of the 2007-08 financial crisis, leading to more extremal co-movement.
引用
收藏
页码:627 / 643
页数:17
相关论文
共 50 条
  • [41] A robust test for autocorrelation in the presence of a structural break in variance
    Mun, Hyeong-Ho
    Shim, Eun-Young
    Kim, Tae-Hwan
    JOURNAL OF STATISTICAL COMPUTATION AND SIMULATION, 2014, 84 (07) : 1552 - 1562
  • [42] Multiplicative window generators of pseudo-random test vectors
    Rajski, J
    Tyszer, J
    EUROPEAN DESIGN & TEST CONFERENCE 1996 - ED&TC 96, PROCEEDINGS, 1996, : 42 - 48
  • [43] A test for the complete independence of high-dimensional random vectors
    Li, Weiming
    Liu, Zhi
    JOURNAL OF STATISTICAL COMPUTATION AND SIMULATION, 2016, 86 (16) : 3135 - 3140
  • [44] Copula-Based Divergence Measures for Dependence Between Random Vectors
    De Keyser, Steven
    Gijbels, Irene
    BUILDING BRIDGES BETWEEN SOFT AND STATISTICAL METHODOLOGIES FOR DATA SCIENCE, 2023, 1433 : 104 - 111
  • [45] Using limited dependence sequential expansion for decompressing test vectors
    Dutta, Avijit
    Touba, Nur A.
    2006 IEEE INTERNATIONAL TEST CONFERENCE, VOLS 1 AND 2, 2006, : 657 - +
  • [46] INFORMATION-THEORETICAL MEASURES OF DEPENDENCE BETWEEN DISCRETE RANDOM VECTORS
    BRAKEMEIER, W
    REVUE ROUMAINE DE MATHEMATIQUES PURES ET APPLIQUEES, 1984, 29 (08): : 657 - 660
  • [47] Extremal points of high-dimensional random walks and mixing times of a Brownian motion on the sphere
    Eldan, Ronen
    ANNALES DE L INSTITUT HENRI POINCARE-PROBABILITES ET STATISTIQUES, 2014, 50 (01): : 95 - 110
  • [48] Minimum LM unit root test with one structural break
    Lee, Junsoo
    Strazicich, Mark C.
    ECONOMICS BULLETIN, 2013, 33 (04): : 2483 - 2492
  • [49] On the test of covariance between two high-dimensional random vectors
    Chen, Yongshuai
    Guo, Wenwen
    Cui, Hengjian
    STATISTICAL PAPERS, 2024, 65 (05) : 2687 - 2717
  • [50] Modeling temporal dependence of Spherically Invariant Random Vectors with triplet Markov chains
    Brunel, Nicolas
    Pieczynski, Wojciech
    2005 IEEE/SP 13th Workshop on Statistical Signal Processing (SSP), Vols 1 and 2, 2005, : 663 - 668