A NOTE ON *-CONFORMAL AND GRADIENT *-CONFORMAL η-RICCI SOLITONS IN α-COSYMPLECTIC MANIFOLDS

被引:2
|
作者
Haseeb, Abdul [1 ]
Prasad, Rajendra [2 ]
Chaubey, Sudhakar K. [3 ]
Vanli, Aysel Turgut [4 ]
机构
[1] Jazan Univ, Fac Sci, Dept Math, Jazan 2097, Saudi Arabia
[2] Univ Lucknow, Dept Math & Astron, Lucknow 226007, Uttar Pradesh, India
[3] Univ Technol & Appl Sci, Dept Math, POB 77, Shinas 324, Oman
[4] Gazi Univ, Dept Math, Ankara, Turkey
来源
HONAM MATHEMATICAL JOURNAL | 2022年 / 44卷 / 02期
关键词
alpha-cosymplectic manifolds; eta-Einstein manifolds; *-conformal eta-Ricci solitons; gradient *-conformal eta-Ricci solitons; EPSILON;
D O I
10.5831/HMJ.2022.44.2.231
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In the present paper we study the properties of alpha-cosymplectic manifolds endowed with *-conformal eta-Ricci solitons and gradient *-conformal eta-Ricci solitons.
引用
收藏
页码:231 / 243
页数:13
相关论文
共 50 条
  • [21] Some Results on Conformal Geometry of Gradient Ricci Solitons
    J. F. Silva Filho
    [J]. Bulletin of the Brazilian Mathematical Society, New Series, 2020, 51 : 937 - 955
  • [22] Conformal η-Ricci solitons within the framework of indefinite Kenmotsu manifolds
    Li, Yanlin
    Ganguly, Dipen
    Dey, Santu
    Bhattacharyya, Arindam
    [J]. AIMS MATHEMATICS, 2022, 7 (04): : 5408 - 5430
  • [23] Conformal Ricci-Yamabe solitons on warped product manifolds
    Singh, Jay Prakash
    Sumlalsanga, Robert
    [J]. FILOMAT, 2024, 38 (11) : 3791 - 3802
  • [24] Curvature of locally conformal cosymplectic manifolds
    Falcitelli, Maria
    [J]. PUBLICATIONES MATHEMATICAE-DEBRECEN, 2008, 72 (3-4): : 385 - 406
  • [25] RICCI SOLITONS IN alpha-COSYMPLECTIC MANIFOLDS
    Singh, Jay Prakash
    Lalmalsawma, Chawngthu
    [J]. FACTA UNIVERSITATIS-SERIES MATHEMATICS AND INFORMATICS, 2018, 33 (03): : 375 - 387
  • [26] On gradient Ricci solitons conformal to a pseudo-Euclidean space
    Ezequiel Barbosa
    Romildo Pina
    Keti Tenenblat
    [J]. Israel Journal of Mathematics, 2014, 200 : 213 - 224
  • [27] Gradient Ricci solitons admitting a closed conformal Vector field
    Diogenes, R.
    Ribeiro, E., Jr.
    Silva Filho, J.
    [J]. JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2017, 455 (02) : 1975 - 1983
  • [28] On gradient Ricci solitons conformal to a pseudo-Euclidean space
    Barbosa, Ezequiel
    Pina, Romildo
    Tenenblat, Keti
    [J]. ISRAEL JOURNAL OF MATHEMATICS, 2014, 200 (01) : 213 - 224
  • [29] ON THE GLOBAL STRUCTURE OF CONFORMAL GRADIENT SOLITONS WITH NONNEGATIVE RICCI TENSOR
    Catino, Giovanni
    Mantegazza, Carlo
    Mazzieri, Lorenzo
    [J]. COMMUNICATIONS IN CONTEMPORARY MATHEMATICS, 2012, 14 (06)
  • [30] Gradient Ricci Solitons on Spacelike Hypersurfaces of Lorentzian Manifolds Admitting a Closed Conformal Timelike Vector Field
    Alshehri, Norah
    Guediri, Mohammed
    [J]. MATHEMATICS, 2024, 12 (06)