PERIODIC SOLUTIONS FOR SOME NONLINEAR PARTIAL NEUTRAL FUNCTIONAL DIFFERENTIAL EQUATIONS

被引:6
|
作者
Benkhalti, Rachid [1 ]
Elazzouzi, Abdelhai [2 ]
Ezzinbi, Khalil [2 ]
机构
[1] Pacific Lutheran Univ, Dept Math, Tacoma, WA 98447 USA
[2] Univ Cadi Ayyad, Fac Sci Semlalia, Dept Math, Marrakech, Morocco
来源
关键词
Hille-Yosida condition; partial neutral functional equations; multivalued maps; condensing maps; periodic solutions; HOPF-BIFURCATION;
D O I
10.1142/S0218127410025600
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this work, we study the existence of periodic solutions for some nonlinear partial functional differential equation of neutral type. We assume that the linear part is nondensely defined and satisfies the Hille-Yosida condition. The delayed part is assumed to be omega-periodic with respect to the first argument. Using a fixed point theorem for multivalued mapping, some sufficient conditions are given to prove the existence of periodic solutions.
引用
收藏
页码:545 / 555
页数:11
相关论文
共 50 条