Local existence and lower bound of blow-up time to a Cauchy problem of a coupled nonlinear wave equations

被引:1
|
作者
Kafini, Mohammad [1 ]
Al-Omari, Shadi [2 ]
机构
[1] King Fahd Univ Petr & Minerals, Dept Math & Stat, IR Ctr Construct & Bldg Mat, Dhahran 31261, Saudi Arabia
[2] King Fahd Univ Petr & Minerals, Dept Math, IR Ctr Construct & Bldg Mat, Preparatory Year Program, Dhahran 31261, Saudi Arabia
来源
AIMS MATHEMATICS | 2021年 / 6卷 / 08期
关键词
Cauchy problem; blow up; negative initial energy; nonlinear source; lower bound; GLOBAL NONEXISTENCE THEOREMS; EVOLUTION-EQUATIONS; INITIAL-ENERGY; UNIFORM DECAY; SYSTEM;
D O I
10.3934/math.2021526
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we consider a Cauchy problem of a coupled linearly-damped wave equations with nonlinear sources. In the whole space, we establish the local existence and show that there are solutions with negative initial energy that blow up in a finite time. Moreover, under some conditions on the initial data, we estimate a lower bound of that time.
引用
收藏
页码:9059 / 9074
页数:16
相关论文
共 50 条
  • [31] An Explicit Lower Bound for Blow Up Time in a Class of Nonlinear Wave Equations with Nonlinear Damping and Source Terms
    Xiao-ming Peng
    Ya-dong Shang
    Xue-qin Wang
    Acta Mathematicae Applicatae Sinica, English Series, 2021, 37 : 148 - 154
  • [32] Blow-up of solutions of some nonlinear wave equations
    Galakhov, E. I.
    DIFFERENTIAL EQUATIONS, 2009, 45 (01) : 59 - 67
  • [33] BLOW-UP THEOREMS FOR NONLINEAR WAVE-EQUATIONS
    GLASSEY, RT
    MATHEMATISCHE ZEITSCHRIFT, 1973, 132 (03) : 183 - 203
  • [34] An Explicit Lower Bound for Blow Up Time in a Class of Nonlinear Wave Equations with Nonlinear Damping and Source Terms
    Peng, Xiao-ming
    Shang, Ya-dong
    Wang, Xue-qin
    ACTA MATHEMATICAE APPLICATAE SINICA-ENGLISH SERIES, 2021, 37 (01): : 148 - 154
  • [35] An Explicit Lower Bound for Blow Up Time in a Class of Nonlinear Wave Equations with Nonlinear Damping and Source Terms
    Xiao-ming PENG
    Ya-dong SHANG
    Xue-qin WANG
    ActaMathematicaeApplicataeSinica, 2021, 37 (01) : 148 - 154
  • [36] Blow-up for nonlinear dissipative wave equations in Rn
    Todorova, G
    Vitillaro, E
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2005, 303 (01) : 242 - 257
  • [37] CONTROL OF BLOW-UP SINGULARITIES FOR NONLINEAR WAVE EQUATIONS
    Kichenassamy, Satyanad
    EVOLUTION EQUATIONS AND CONTROL THEORY, 2013, 2 (04): : 669 - 677
  • [38] THE BLOW-UP BOUNDARY FOR NONLINEAR-WAVE EQUATIONS
    CAFFARELLI, LA
    FRIEDMAN, A
    TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 1986, 297 (01) : 223 - 241
  • [39] Blow-up of solutions of some nonlinear wave equations
    E. I. Galakhov
    Differential Equations, 2009, 45 : 59 - 67
  • [40] On a logarithmic wave equation with nonlinear dynamical boundary conditions: local existence and blow-up
    Irkil, Nazli
    Mahdi, Khaled
    Piskin, Erhan
    Alnegga, Mohammad
    Boulaaras, Salah
    JOURNAL OF INEQUALITIES AND APPLICATIONS, 2023, 2023 (01)