Local existence and lower bound of blow-up time to a Cauchy problem of a coupled nonlinear wave equations

被引:1
|
作者
Kafini, Mohammad [1 ]
Al-Omari, Shadi [2 ]
机构
[1] King Fahd Univ Petr & Minerals, Dept Math & Stat, IR Ctr Construct & Bldg Mat, Dhahran 31261, Saudi Arabia
[2] King Fahd Univ Petr & Minerals, Dept Math, IR Ctr Construct & Bldg Mat, Preparatory Year Program, Dhahran 31261, Saudi Arabia
来源
AIMS MATHEMATICS | 2021年 / 6卷 / 08期
关键词
Cauchy problem; blow up; negative initial energy; nonlinear source; lower bound; GLOBAL NONEXISTENCE THEOREMS; EVOLUTION-EQUATIONS; INITIAL-ENERGY; UNIFORM DECAY; SYSTEM;
D O I
10.3934/math.2021526
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we consider a Cauchy problem of a coupled linearly-damped wave equations with nonlinear sources. In the whole space, we establish the local existence and show that there are solutions with negative initial energy that blow up in a finite time. Moreover, under some conditions on the initial data, we estimate a lower bound of that time.
引用
收藏
页码:9059 / 9074
页数:16
相关论文
共 50 条