Graphical model selection with latent variables

被引:6
|
作者
Wu, Changjing [1 ]
Zhao, Hongyu [1 ,2 ]
Fang, Huaying [3 ]
Deng, Minghua [1 ,4 ,5 ]
机构
[1] Peking Univ, Sch Math Sci, Beijing 100871, Peoples R China
[2] Yale Sch Publ Hlth, Dept Biostat, New Haven, CT 06520 USA
[3] Stanford Univ, Dept Genet, Sch Med, Stanford, CA 94305 USA
[4] Peking Univ, Ctr Stat Sci, Beijing 100871, Peoples R China
[5] Peking Univ, Ctr Quantitat Biol, Beijing 100871, Peoples R China
来源
ELECTRONIC JOURNAL OF STATISTICS | 2017年 / 11卷 / 02期
基金
中国国家自然科学基金;
关键词
ADMM; Gaussian graphical models; latent variable; low rank; model selection consistency; sparsity; PRECISION MATRIX ESTIMATION; HIGH-DIMENSIONAL COVARIANCE; OPTIMAL RATES; DECOMPOSITION;
D O I
10.1214/17-EJS1331
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
Gaussian graphical models are commonly used to characterize the conditional dependence among variables. However, ignorance of the effect of latent variables may blur the structure of a graph and corrupt statistical inference. In this paper, we propose a method for learning Latent Variables graphical models via l(1) and trace penalized D-trace loss (LVD), which achieves parameter estimation and model selection consistency under certain identifiability conditions. We also present an efficient ADMM algorithm to obtain the penalized estimation of the sparse precision matrix. Using simulation studies, we validate the theoretical properties of our estimator and show its superior performance over other methods. The usefulness of the proposed method is also demonstrated through its application to a yeast genetical genomic data.
引用
收藏
页码:3485 / 3521
页数:37
相关论文
共 50 条
  • [21] Confidence graphs for graphical model selection
    Wang, Linna
    Qin, Yichen
    Li, Yang
    [J]. STATISTICS AND COMPUTING, 2021, 31 (05)
  • [22] A genetic algorithm for graphical model selection
    Irene Poli
    Alberto Roverato
    [J]. Journal of the Italian Statistical Society, 1998, 7 (2) : 197 - 208
  • [23] Learning Latent Variable Dynamic Graphical Models by Confidence Sets Selection
    Ciccone, Valentina
    Ferrante, Augusto
    Zorzi, Mattia
    [J]. IEEE TRANSACTIONS ON AUTOMATIC CONTROL, 2020, 65 (12) : 5130 - 5143
  • [24] A latent trait and a latent class model for mixed observed variables
    Moustaki, I
    [J]. BRITISH JOURNAL OF MATHEMATICAL & STATISTICAL PSYCHOLOGY, 1996, 49 : 313 - 334
  • [25] Model selection and estimation in the matrix normal graphical model
    Yin, Jianxin
    Li, Hongzhe
    [J]. JOURNAL OF MULTIVARIATE ANALYSIS, 2012, 107 : 119 - 140
  • [26] Vines - A new graphical model for dependent random variables
    Bedford, T
    Cooke, RM
    [J]. ANNALS OF STATISTICS, 2002, 30 (04): : 1031 - 1068
  • [27] Interpreting the interaction of latent variables: A methodological exemplification of the Johnson-Neyman graphical method
    Girard, Stephanie
    Beland, Sebastien
    Lemoyne, Jean
    Caron, Pier-Olivier
    [J]. REVUE DES SCIENCES DE L EDUCATION, 2020, 46 (02): : 174 - 201
  • [28] Automatic selection of latent variables in variational auto-encoders
    Jouffroy, Emma
    Giremus, Audrey
    Berthoumieu, Yannick
    Bach, Olivier
    Hugget, Alain
    [J]. 2022 30TH EUROPEAN SIGNAL PROCESSING CONFERENCE (EUSIPCO 2022), 2022, : 1407 - 1411
  • [29] Selection of Latent Variables for Multiple Mixed-outcome Models
    Zhou, Ling
    Lin, Huazhen
    Song, Xinyuan
    Li, Yi
    [J]. SCANDINAVIAN JOURNAL OF STATISTICS, 2014, 41 (04) : 1064 - 1082
  • [30] Latent class model with two latent variables for analysis of count data
    Yamaguchi, Kazunori
    Sakurai, Naoko
    Watanabe, Michiko
    [J]. COMPSTAT 2006: PROCEEDINGS IN COMPUTATIONAL STATISTICS, 2006, : 395 - +