Graphical model selection with latent variables

被引:6
|
作者
Wu, Changjing [1 ]
Zhao, Hongyu [1 ,2 ]
Fang, Huaying [3 ]
Deng, Minghua [1 ,4 ,5 ]
机构
[1] Peking Univ, Sch Math Sci, Beijing 100871, Peoples R China
[2] Yale Sch Publ Hlth, Dept Biostat, New Haven, CT 06520 USA
[3] Stanford Univ, Dept Genet, Sch Med, Stanford, CA 94305 USA
[4] Peking Univ, Ctr Stat Sci, Beijing 100871, Peoples R China
[5] Peking Univ, Ctr Quantitat Biol, Beijing 100871, Peoples R China
来源
ELECTRONIC JOURNAL OF STATISTICS | 2017年 / 11卷 / 02期
基金
中国国家自然科学基金;
关键词
ADMM; Gaussian graphical models; latent variable; low rank; model selection consistency; sparsity; PRECISION MATRIX ESTIMATION; HIGH-DIMENSIONAL COVARIANCE; OPTIMAL RATES; DECOMPOSITION;
D O I
10.1214/17-EJS1331
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
Gaussian graphical models are commonly used to characterize the conditional dependence among variables. However, ignorance of the effect of latent variables may blur the structure of a graph and corrupt statistical inference. In this paper, we propose a method for learning Latent Variables graphical models via l(1) and trace penalized D-trace loss (LVD), which achieves parameter estimation and model selection consistency under certain identifiability conditions. We also present an efficient ADMM algorithm to obtain the penalized estimation of the sparse precision matrix. Using simulation studies, we validate the theoretical properties of our estimator and show its superior performance over other methods. The usefulness of the proposed method is also demonstrated through its application to a yeast genetical genomic data.
引用
收藏
页码:3485 / 3521
页数:37
相关论文
共 50 条
  • [1] Graphical Model Selection for Gaussian Conditional Random Fields in the Presence of Latent Variables
    Frot, Benjamin
    Jostins, Luke
    McVean, Gilean
    [J]. JOURNAL OF THE AMERICAN STATISTICAL ASSOCIATION, 2019, 114 (526) : 723 - 734
  • [2] LATENT VARIABLE GRAPHICAL MODEL SELECTION VIA CONVEX OPTIMIZATION
    Chandrasekaran, Venkat
    Parrilo, Pablo A.
    Willsky, Alan S.
    [J]. ANNALS OF STATISTICS, 2012, 40 (04): : 1935 - 1967
  • [3] Thresholded graphical lasso adjusts for latent variables
    Wang, Minjie
    Allen, Genevera, I
    [J]. BIOMETRIKA, 2023, 110 (03) : 681 - 697
  • [4] DISCUSSION: LATENT VARIABLE GRAPHICAL MODEL SELECTION VIA CONVEX OPTIMIZATION
    Lauritzen, Steffen
    Meinshausen, Nicolai
    [J]. ANNALS OF STATISTICS, 2012, 40 (04): : 1973 - 1977
  • [5] Alternating Direction Methods for Latent Variable Gaussian Graphical Model Selection
    Ma, Shiqian
    Xue, Lingzhou
    Zou, Hui
    [J]. NEURAL COMPUTATION, 2013, 25 (08) : 2172 - 2198
  • [6] Causal graphical models with latent variables: Learning and inference
    Meganck, Stijn
    Leray, Philippe
    Manderick, Bernard
    [J]. SYMBOLIC AND QUANTITATIVE APPROACHES TO REASONING WITH UNCERTAINTY, PROCEEDINGS, 2007, 4724 : 5 - +
  • [7] A latent class selection model for categorical response variables with nonignorably missing data
    Lee, Jung Wun
    Harel, Ofer
    [J]. STATISTICS AND ITS INTERFACE, 2024, 17 (04) : 635 - 648
  • [8] A Graphical and Numerical Method for Selection of Variables in Linear Models
    Iqbal, Munawar
    Ali, Asghar
    [J]. PAKISTAN JOURNAL OF STATISTICS AND OPERATION RESEARCH, 2006, 2 (02) : 115 - 126
  • [9] A Graphical Method for Model Selection
    Boiroju, Naveen Kumar
    Reddy, M. Krishna
    [J]. PAKISTAN JOURNAL OF STATISTICS AND OPERATION RESEARCH, 2012, 8 (04) : 767 - 776
  • [10] Adaptive Selection of Latent Variables for Process Monitoring
    Luo, Lijia
    Bao, Shiyi
    Mao, Jianfeng
    [J]. INDUSTRIAL & ENGINEERING CHEMISTRY RESEARCH, 2019, 58 (21) : 9075 - 9086