Error estimation of numerical solutions of linear convection-diffusion problem

被引:2
|
作者
Tanaka, N [1 ]
Motoyama, Y [1 ]
机构
[1] Ibaraki Univ, Ibaraki, Japan
关键词
error estimation; convection-diffusion problem; sensitivity analysis; upwind scheme; Lax-Wendroff scheme;
D O I
10.1080/10618560412331286346
中图分类号
O3 [力学];
学科分类号
08 ; 0801 ;
摘要
We present a new error estimating method of numerical solutions using the sensitivity analysis and modified equation techniques. The method can investigate not only the effects of numerical error but also those of uncertainty in a physical model at the same time. In this paper, we apply it to the finite-difference method of upwind and Lax-Wendroff schemes for the linear convection-diffusion problems. If a standard case of typical parameters is computed with the method, no additional computation is required to estimate the other numerical parameters' results such as more detailed solutions. Furthermore, we can quantitatively estimate the numerical error only from the sensitivity analysis results.
引用
收藏
页码:61 / 66
页数:6
相关论文
共 50 条
  • [21] SEMIDISCRETE LEAST-SQUARES METHODS FOR LINEAR CONVECTION-DIFFUSION PROBLEM
    CHEN, TF
    COMPUTERS & MATHEMATICS WITH APPLICATIONS, 1992, 24 (11) : 29 - 44
  • [22] Numerical simulation for convection-diffusion problem with periodic micro-structure
    Wu Zhihua
    Yan Ningning
    ACTA MATHEMATICA SCIENTIA, 2008, 28 (02) : 236 - 252
  • [23] Non-oscillatory Spatial Solutions Criterion for Convection-Diffusion Problem
    Abdullah, Aslam
    INTERNATIONAL JOURNAL OF INTEGRATED ENGINEERING, 2021, 13 (02): : 247 - 257
  • [24] Linear feedback control for convection-diffusion
    Kavouklis, C
    Carey, GF
    INTERNATIONAL JOURNAL OF NUMERICAL METHODS FOR HEAT & FLUID FLOW, 2003, 13 (2-3) : 365 - 382
  • [25] A problem of convection-diffusion with chemical reaction
    Gaultier, M
    Lezaun, M
    COMPTES RENDUS DE L ACADEMIE DES SCIENCES SERIE I-MATHEMATIQUE, 1997, 324 (02): : 159 - 164
  • [26] A contact problem for a convection-diffusion equation
    Pomeranz, S
    Lewis, G
    Constanda, C
    INTEGRAL METHODS IN SCIENCE AND ENGINEERING: THEORETICAL AND PRACTICAL ASPECTS, 2006, : 235 - +
  • [27] DEAD CORES IN A CONVECTION-DIFFUSION PROBLEM
    VANDERHOUT, R
    LI, ZY
    PELETIER, LA
    ROBIJN, FHA
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 1994, 187 (01) : 55 - 75
  • [28] A stabilizing subgrid for convection-diffusion problem
    Nesliturk, AI
    MATHEMATICAL MODELS & METHODS IN APPLIED SCIENCES, 2006, 16 (02): : 211 - 231
  • [29] On error analysis in variational data assimilation problem for a nonlinear convection-diffusion model
    Parmuzin, E
    Le Dimet, FX
    Shutyaev, V
    RUSSIAN JOURNAL OF NUMERICAL ANALYSIS AND MATHEMATICAL MODELLING, 2006, 21 (02) : 169 - 183
  • [30] AN ERROR ESTIMATE FOR VISCOUS APPROXIMATE SOLUTIONS TO DEGENERATE ANISOTROPIC CONVECTION-DIFFUSION EQUATIONS
    Klingenberg, Christian
    Koley, Ujjwal
    HYPERBOLIC PROBLEMS: THEORY, NUMERICS, APPLICATIONS, 2014, 8 : 741 - 748