Exotic Brownian motions

被引:1
|
作者
Osada, Hirofumi [1 ]
机构
[1] Kyushu Univ 33, Fac Math, Fukuoka 8128581, Japan
关键词
diffusion; Sierpinski carpet; fractal; Dirichlet form;
D O I
10.2206/kyushujm.61.233
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We develop a method to construct diffusions on singular sets. Our method can be applied to various fractal sets including Sierpinski carpets, the Sierpinski gasket and the Menger sponge.
引用
收藏
页码:233 / 257
页数:25
相关论文
共 50 条
  • [31] Going through the Brownian motions
    Choi, CQ
    SCIENTIFIC AMERICAN, 2005, 293 (06) : 36 - 36
  • [32] The open quantum Brownian motions
    Bauer, Michel
    Bernard, Denis
    Tilloy, Antoine
    JOURNAL OF STATISTICAL MECHANICS-THEORY AND EXPERIMENT, 2014,
  • [33] FINITARY ISOMORPHISMS OF BROWNIAN MOTIONS
    Kosloff, Zemer
    Soo, Terry
    ANNALS OF PROBABILITY, 2020, 48 (04): : 1966 - 1979
  • [34] Quantum Mechanics and Brownian Motions
    Mikio Namiki
    Acta Applicandae Mathematica, 2000, 63 : 275 - 282
  • [35] Bouncing Skew Brownian Motions
    Arnaud Gloter
    Miguel Martinez
    Journal of Theoretical Probability, 2018, 31 : 319 - 363
  • [36] SERIES EXPANSIONS OF FRACTIONAL BROWNIAN MOTIONS AND STRONG LOCAL NONDETERMINISM OF BIFRACTIONAL BROWNIAN MOTIONS ON BALLS AND SPHERES
    Lu, T.
    Ma, C.
    Wang, F.
    THEORY OF PROBABILITY AND ITS APPLICATIONS, 2023, 68 (01) : 88 - 110
  • [37] On the Almost Intersections of Transient Brownian Motions
    Sergio Albeverio
    Maria Simonetta Bernabei
    Xian Yin Zhou
    Acta Applicandae Mathematica, 2004, 84 : 1 - 28
  • [38] EIGENFUNCTION EXPANSION FOR FRACTIONAL BROWNIAN MOTIONS
    MACCONE, C
    NUOVO CIMENTO DELLA SOCIETA ITALIANA DI FISICA B-GENERAL PHYSICS RELATIVITY ASTRONOMY AND MATHEMATICAL PHYSICS AND METHODS, 1981, 61 (02): : 229 - 248
  • [40] ON THE MULTIPLE TIME SET OF BROWNIAN MOTIONS
    ZHOU XIANYIN(Department of Matehematics
    Chinese Annals of Mathematics, 1994, (02) : 225 - 234