A note on generalizations of semisimple modules

被引:0
|
作者
Kaynar, Engin [2 ]
Turkmen, Burcu N. [1 ]
Turkmen, Ergul [1 ]
机构
[1] Amasya Univ, Fac Art & Sci, Dept Math, Via Tokat Path, TR-05100 Amasya, Turkey
[2] Amasya Univ, Sch Tech Sci, Kemal Nehrezoglu St 92-B, TR-05100 Amasya, Turkey
关键词
radical; supplement; MAXIMAL SUBMODULES;
D O I
10.14712/1213-7243.2019.011
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
A left module M over an arbitrary ring is called an RD-module (or an RS-module) if every submodule N of M with Rad(M) subset of N is a direct summand of (a supplement in, respectively) M. In this paper, we investigate the various properties of RD-modules and RS-modules. We prove that M is an RD-module if and only if M = Rad(M) circle plus X, where X is semisimple. We show that a finitely generated RS-module is semisimple. This gives us the characterization of semisimple rings in terms of RS-modules. We completely determine the structure of these modules over Dedekind domains.
引用
收藏
页码:305 / 312
页数:8
相关论文
共 50 条
  • [31] Endofinite modules and pure semisimple rings
    Dung, NV
    García, JL
    JOURNAL OF ALGEBRA, 2005, 289 (02) : 574 - 593
  • [32] Semisimple-direct-injective modules
    Abyzov, Adel
    Kosan, Tamer
    Truong Cong Quynh
    Tapkin, Dan
    HACETTEPE JOURNAL OF MATHEMATICS AND STATISTICS, 2021, 50 (02): : 516 - 525
  • [33] Two generalizations of homology modules
    Zhao, Wei
    Chen, Mingzhao
    Pu, Yongyan
    Xiao, Xuelian
    COMMUNICATIONS IN ALGEBRA, 2024, 52 (05) : 1908 - 1921
  • [34] Prime virtually semisimple modules and rings
    Behboodi, Mahmood
    Bigdeli, Ebrahim
    COMMUNICATIONS IN ALGEBRA, 2019, 47 (10) : 3995 - 4008
  • [35] Baer semisimple modules and Baer rings
    Guo, Xiaojiang
    Shum, K. P.
    ALGEBRA & DISCRETE MATHEMATICS, 2008, (02): : 42 - 49
  • [36] New generalizations of lifting modules
    Amouzegar, Tayyebeh
    NOTE DI MATEMATICA, 2016, 36 (02): : 49 - 60
  • [37] GENERALIZATIONS OF CS-MODULES
    SMITH, PF
    TERCAN, A
    COMMUNICATIONS IN ALGEBRA, 1993, 21 (06) : 1809 - 1847
  • [38] Direct Projective Modules, Direct Injective Modules, and their Generalizations
    Abyzov A.N.
    Tuganbaev A.A.
    Tapkin D.T.
    Cong Q.T.
    Journal of Mathematical Sciences, 2021, 258 (2) : 250 - 264
  • [39] Some generalizations of p-semisimple BCI algebras and groups
    Walendziak, Andrzej
    SOFT COMPUTING, 2020, 24 (17) : 12781 - 12787
  • [40] Some generalizations of p-semisimple BCI algebras and groups
    Andrzej Walendziak
    Soft Computing, 2020, 24 : 12781 - 12787