Experimental Comparative Study of the Histotoxicity of Poly(Lactic-co-Glycolic Acid) copolymer and Poly(Lactic-co-Glycolic Acid)-Poly(Isoprene) Blend

被引:6
|
作者
Kim, Jung Ho [1 ]
Marques, Douglas Ramos [2 ]
Faller, Gustavo Juliani [3 ]
Collares, Marcus Vinicius [3 ]
Rodriguez, Rubens [4 ]
dos Santos, Luis Alberto [2 ]
Dias, Diego da Silva [3 ]
机构
[1] Univ Fed Rio Grande do Sul, Hosp Clin Porto Alegre, Inst Ortopedia Traumato Passo Fundo, Passo Fundo, RS, Brazil
[2] Univ Fed Rio Grande do Sul, Escola Engn, Dept Mat, BR-90046900 Porto Alegre, RS, Brazil
[3] Univ Fed Rio Grande do Sul, Hosp Clin Porto Alegre, BR-90046900 Porto Alegre, RS, Brazil
[4] Inst Patol Passo Fundo, Passo Fundo, RS, Brazil
来源
POLIMEROS-CIENCIA E TECNOLOGIA | 2014年 / 24卷 / 05期
关键词
PLGA; PI; histotoxicity; in vivo; CRANIOSYNOSTOSIS; BONE; FRACTURE;
D O I
10.1590/0104-1428.1490
中图分类号
O63 [高分子化学(高聚物)];
学科分类号
070305 ; 080501 ; 081704 ;
摘要
Current treatments of craniosynostosis rely on the application of metal springs for cranial bone deviation. However, those metal springs demand a second surgical procedure for their removal. An attractive alternative would be the substitution of metal for bioresorbable polymers in the composition of the springs. The addition of poly(isoprene), PI, to poly(lactic-co-glycolic acid), PLGA, produces a polymeric blend with partial miscibility and distinct mechanical behavior that may benefit the patient recover. It is necessary to compare the histotoxicity of PLGA/PI to that presented by PLGA. In order to verify the histological behavior of the blend, 46 male Wistar rats (Rattus norvegicus, albino strain) underwent implantation of PLGA or PLGA/PI in the skull and were allocated into subgroups by timing of euthanasia (15, 30, 60, or 90 days). After euthanasia, the skull was removed and the histotoxicity was assessed histopathologically. The PLGA/PI blend showed greater histotoxicity in animals euthanized at 60 days, although in this period the histotoxicity of the PLGA/PI blend was similar to that of the PLGA copolymer at 15 days. Despite the instability of histological response, presented in different periods of observation, the results obtained in long-term show that the material has high potential for studies in craniosynostosis treatment.
引用
收藏
页码:529 / 535
页数:7
相关论文
共 50 条
  • [21] Poly(Lactic-co-Glycolic) Acid as a Carrier for Imaging Contrast Agents
    Doiron, Amber L.
    Homan, Kimberly A.
    Emelianov, Stanislav
    Brannon-Peppas, Lisa
    PHARMACEUTICAL RESEARCH, 2009, 26 (03) : 674 - 682
  • [22] Interaction of poly(lactic-co-glycolic acid) nanoparticles at fluid interfaces
    Gyulai, Gergo
    Kiss, Eva
    JOURNAL OF COLLOID AND INTERFACE SCIENCE, 2017, 500 : 9 - 19
  • [23] Biocompatibility, biodegradation and biomedical applications of poly(lactic acid)/poly(lactic-co-glycolic acid) micro and nanoparticles
    Elmowafy E.M.
    Tiboni M.
    Soliman M.E.
    Journal of Pharmaceutical Investigation, 2019, 49 (4) : 347 - 380
  • [24] Poly(lactic acid) and poly(lactic-co-glycolic acid) particles as versatile carrier platforms for vaccine delivery
    Pavot, Vincent
    Berthet, Morgane
    Resseguier, Julien
    Legaz, Sophie
    Handke, Nadege
    Gilbert, Sarah C.
    Paul, Stephane
    Verrier, Bernard
    NANOMEDICINE, 2014, 9 (17) : 2703 - 2718
  • [25] Multifaceted chitin/poly(lactic-co-glycolic) acid composite nanogels
    Rejinold, N. Sanoj
    Biswas, Raja
    Chellan, Gopi
    Jayakumar, R.
    INTERNATIONAL JOURNAL OF BIOLOGICAL MACROMOLECULES, 2014, 67 : 279 - 288
  • [26] In vitro evaluation of biodegradation of poly(lactic-co-glycolic acid) sponges
    Yoshioka, Taiyo
    Kawazoe, Naoki
    Tateishi, Tetsuya
    Chen, Guoping
    BIOMATERIALS, 2008, 29 (24-25) : 3438 - 3443
  • [27] Emerging trends in Poly(lactic-co-glycolic) acid bionanoarchitectures and applications
    Idumah, Christopher Igwe
    CLEANER MATERIALS, 2022, 5
  • [28] Latent, Immunosuppressive Nature of Poly(lactic-co-glycolic acid) Microparticles
    Allen, Riley P.
    Bolandparvaz, Amir
    Ma, Jeffrey A.
    Manickam, Vishal A.
    Lewis, Jamal S.
    ACS BIOMATERIALS SCIENCE & ENGINEERING, 2018, 4 (03): : 900 - 918
  • [29] Poly (lactic-co-glycolic acid) as a controlled release delivery device
    Lim, Tee Yong
    Poh, Chye Khoon
    Wang, W.
    JOURNAL OF MATERIALS SCIENCE-MATERIALS IN MEDICINE, 2009, 20 (08) : 1669 - 1675
  • [30] Poly(Lactic-co-Glycolic) Acid as a Carrier for Imaging Contrast Agents
    Amber L. Doiron
    Kimberly A. Homan
    Stanislav Emelianov
    Lisa Brannon-Peppas
    Pharmaceutical Research, 2009, 26 : 674 - 682