Generalization of some fractional versions of Hadamard inequalities via exponentially (α, h - m)-convex functions

被引:5
|
作者
Lv, Yu-Pei [1 ]
Farid, Ghulam [2 ]
Yasmeen, Hafsa [2 ]
Nazeer, Waqas [3 ]
Jung, Chahn Yong [4 ]
机构
[1] Huzhou Univ, Dept Math, Huzhou 313000, Peoples R China
[2] COMSATS Univ Islamabad, Dept Math, Attock Campus, Attock, Pakistan
[3] Govt Coll Univ Lahore, Dept Math, Lahore, Pakistan
[4] Gyeongsang Natl Univ, Dept Business Adm, Jinju 52828, South Korea
来源
AIMS MATHEMATICS | 2021年 / 6卷 / 08期
基金
加拿大自然科学与工程研究理事会;
关键词
(alpha; h - m)-convex function; exponentionally; Hadamard inequality; Riemann-Liouville fractional integrals; M-CONVEX FUNCTIONS; DIFFERENTIABLE MAPPINGS; REAL NUMBERS;
D O I
10.3934/math.2021521
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper we give Hadamard inequalities for exponentially (alpha, h - m)-convex functions using Riemann-Liouville fractional integrals for strictly increasing function. Results for RiemannLiouville fractional integrals of convex, m-convex, s-convex, (alpha, m)-convex, (s, m)-convex, (h - m) convex, (alpha, h - m)-convex, exponentially convex, exponentially m-convex, exponentially s-convex, exponentially (s, m)-convex, exponentially (h - m)-convex, exponentially (alpha, h - m)-convex functions are particular cases of the results of this paper. The error estimations of these inequalities by using two fractional integral identities are also given.
引用
收藏
页码:8978 / 8999
页数:22
相关论文
共 50 条
  • [41] Some Hermite-Hadamard Type Inequalities For Convex Functions Via New Fractional Conformable Integrals And Related Inequalities
    Gozpinar, Abdurrahman
    1ST INTERNATIONAL CONFERENCE ON MATHEMATICAL AND RELATED SCIENCES (ICMRS 2018), 2018, 1991
  • [42] On the Fractional Hermite-Hadamard Type Inequalities for (α, m)-Logarithmically Convex Functions
    Wang, JinRong
    Liao, Yumei
    Deng, JianHua
    FILOMAT, 2015, 29 (07) : 1565 - 1580
  • [43] On Some Hadamard-Type Inequalities for (r, m)-Convex Functions
    Ozdemir, M. Emin
    Set, Erhan
    Akdemir, Ahmet Ocak
    APPLICATIONS AND APPLIED MATHEMATICS-AN INTERNATIONAL JOURNAL, 2014, 9 (01): : 388 - 401
  • [44] Caputo Fractional Derivative Hadamard Inequalities for Strongly m-Convex Functions
    Feng, Xue
    Feng, Baolin
    Farid, Ghulam
    Bibi, Sidra
    Xiaoyan, Qi
    Wu, Ze
    JOURNAL OF FUNCTION SPACES, 2021, 2021
  • [45] Some Inequalities of Hermite-Hadamard Type for MT-h-Convex Functions via Classical and Generalized Fractional Integrals
    Qi, Hengxiao
    Nazeer, Waqas
    Abbas, Fatima
    Liao, Wenbo
    JOURNAL OF FUNCTION SPACES, 2022, 2022
  • [46] SOME HERMITE-HADAMARD INEQUALITIES INVOLVING WEIGHTED INTEGRAL OPERATORS VIA (h, s, m)-CONVEX FUNCTIONS
    Korus, P.
    Valdes, J. E. Napoles
    TWMS JOURNAL OF APPLIED AND ENGINEERING MATHEMATICS, 2023, 13 (04): : 1461 - 1471
  • [47] Generalized Hadamard Fractional Integral Inequalities for Strongly (s, m)-Convex Functions
    Miao, Chao
    Farid, Ghulam
    Yasmeen, Hafsa
    Bian, Yanhua
    JOURNAL OF MATHEMATICS, 2021, 2021
  • [48] RIEMANN-LIOUVILLE FRACTIONAL VERSIONS OF HADAMARD INEQUALITY FOR STRONGLY (α, m)-CONVEX FUNCTIONS
    Farid, Ghulam
    Akbar, Saira Bano
    Rathour, Laxmi
    Mishra, Lakshmi Narayan
    KOREAN JOURNAL OF MATHEMATICS, 2021, 29 (04): : 687 - 704
  • [49] Fractional Hadamard-type inequalities for refined (α, h - m) -p-convex functions and their consequences
    Zahra, Moquddsa
    Ashraf, Muhammad
    Farid, Ghulam
    Hussain, Nawab
    FILOMAT, 2024, 38 (15) : 5463 - 5474
  • [50] On the Hadamard's type Inequalities for Convex Functions via Conformable Fractional Integrals
    Yildirim, M. E.
    Akkurt, A.
    Yildirim, H.
    JOURNAL OF INEQUALITIES AND SPECIAL FUNCTIONS, 2018, 9 (03): : 1 - 10