Multi-objective optimization of a tri-generation system based on biomass gasification/digestion combined with S-CO2 cycle and absorption chiller

被引:99
|
作者
Balafkandeh, S. [1 ]
Zare, V. [2 ]
Gholamian, E. [3 ]
机构
[1] Sahand Univ Technol, Sch Mech Engn, Coll Engn, Tabriz, Iran
[2] Urmia Univ Technol, Fac Mech Engn, Orumiyeh, Iran
[3] Univ Tabriz, Sch Mech Engn, Coll Engn, Tabriz, Iran
关键词
Biomass; Biogas; Syngas; Gasifier; Anaerobic digester; CCHP; Multi-objective optimization; ANAEROBIC-DIGESTION; EXERGOECONOMIC ANALYSIS; THERMODYNAMIC ANALYSES; ENERGY RECOVERY; WASTE; COMBUSTION; GASIFIER; EXERGY; SOLAR; CONFIGURATIONS;
D O I
10.1016/j.enconman.2019.112057
中图分类号
O414.1 [热力学];
学科分类号
摘要
A novel configuration of biomass-based cooling, heating and power (CCHP) system, consisting of Gas Turbine (GT), Supercritical Carbon dioxide cycle (S-CO2) and double effect LiBr-H2O absorption chiller is proposed and its performance is analyzed and compared for two cases: 1) fueling with syngas from the gasification process and 2) fueling with biogas from the digestion process. Thermodynamic models are developed to evaluate the proposed systems' performance from energy, exergy and exergoeconomic viewpoints and an environmental assessment is conducted to evaluate the systems' CO2 emission. Then, a multi-objective optimization is applied for which the exergy efficiency and unit cost of system products are selected as the objective functions. The results revealed that the digestion-based system performs better than the gasification-based one in terms of efficiency, unit product cost and environmental impacts. The former yields a maximum exergy efficiency of 47.8%, while for the latter a maximum efficiency of 42.74% is calculated. For digestion-based system, the values of 47.09% and 5.436 $/GJ are calculated for exergy efficiency and product unit cost at the optimum operating conditions. Also, the results of environmental assessment indicated the values of 2.6x10(-2)t/MWh and 4.21x10(-2)t/MWh for CO2 emissions for digestion- and gasification-based systems, respectively.
引用
收藏
页数:13
相关论文
共 50 条
  • [21] Proposal of a tri-generation system by co-combustion of groundnut shell biomass and synthesis gas exiting from a solid oxide fuel cell: Environmental assessment and multi-objective optimization
    Zhou, Jincheng
    Ali, Masood Ashraf
    Alizadeh, As'ad
    Singh, Pradeep Kumar
    Almojil, Sattam Fahad
    Almohana, Abdulaziz Ibrahim
    Alali, Abdulrhman Fahmi
    FUEL, 2023, 343
  • [22] A systematic comparison of different S-CO2 Brayton cycle layouts based on multi-objective optimization for applications in solar power tower plants
    Wang, Kun
    Li, Ming-Jia
    Guo, Jia-Qi
    Li, Peiwen
    Liu, Zhan-Bin
    APPLIED ENERGY, 2018, 212 : 109 - 121
  • [23] Multi-Objective Optimization Based on Life Cycle Assessment for Hybrid Solar and Biomass Combined Cooling,Heating and Power System
    LIU Jiejie
    LI Yao
    MENG Xianyang
    WU Jiangtao
    Journal of Thermal Science, 2024, 33 (03) : 931 - 950
  • [24] Multi-Objective Optimization Based on Life Cycle Assessment for Hybrid Solar and Biomass Combined Cooling, Heating and Power System
    Jiejie Liu
    Yao Li
    Xianyang Meng
    Jiangtao Wu
    Journal of Thermal Science, 2024, 33 : 931 - 950
  • [25] Multi-Objective Optimization Based on Life Cycle Assessment for Hybrid Solar and Biomass Combined Cooling, Heating and Power System
    Liu, Jiejie
    Li, Yao
    Meng, Xianyang
    Wu, Jiangtao
    JOURNAL OF THERMAL SCIENCE, 2024, 33 (03) : 931 - 950
  • [26] Performance evaluation of CO2 pressurization and storage system combined with S-CO2 power generation process and absorption refrigeration cycle
    Wang, Ding
    Sun, Lei
    Xie, Yonghui
    ENERGY, 2023, 273
  • [27] Multi-aspect assessment and multi-objective optimization of sustainable power, heating, and cooling tri-generation system driven by experimentally-produced biodiesels
    Asgari, Armin
    Jannatkhah, Javad
    Yari, Mortaza
    Najafi, Bahman
    ENERGY, 2023, 263
  • [28] Comprehensive analysis and multi-objective optimization of an innovative power generation system using biomass gasification and LNG regasification processes
    Chang, Yue
    Jia, Yulong
    Hong, Tan
    ENERGY, 2023, 283
  • [29] Thermo-Economic Comparative Study and Multi-Objective Optimization of Supercritical CO2-Based Mixtures Brayton Cycle Combined With Absorption Refrigeration Cycle
    Ma, Ya-Nan
    Hu, Peng
    JOURNAL OF THERMAL SCIENCE AND ENGINEERING APPLICATIONS, 2023, 15 (08)
  • [30] Multi-objective grey wolf optimization and parametric study of a continuous solar-based tri-generation system using a phase change material storage unit
    Asgari, Armin
    Yari, Mortaza
    Mahmoudi, S. Mohammad S.
    Desideri, Umberto
    JOURNAL OF ENERGY STORAGE, 2022, 55