SAPPHIRE-SUPPORTED NANOPORES FOR LOW-NOISE DNA SENSING

被引:0
|
作者
Xia, Pengkun [1 ,2 ]
Zuo, Jiawei [1 ,2 ]
Choi, Shinhyuk [1 ,2 ]
Chen, Xiahui [1 ,2 ]
Bai, Jing [1 ]
Wang, Chao [1 ,2 ]
机构
[1] Arizona State Univ, Sch Elect Comp & Energy Engn, Tempe, AZ 85281 USA
[2] Arizona State Univ, Biodesign Ctr Single Mol Biophys, Tempe, AZ 85281 USA
基金
美国国家科学基金会;
关键词
solid-state nanopores; low noise; low capacitance; signal-to-noise ratio; insulating sapphire substrates; MEMS;
D O I
10.1109/MEMS51782.2021.9375372
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
Solid-state nanopore sensors have broad applications from single-molecule biosensing to diagnostics and sequencing. Prevalent nanopore sensors are fabricated on silicon (Si) substrates through micromachining, however, the high capacitive noise resulting from Si conductivity has seriously limited both their sensing accuracy and recording speed. A new approach is proposed here for forming nanopore membranes on insulating sapphire wafers by anisotropic wet etching of sapphire through micropatterned triangular masks. Reproducible fonnation of small membranes with an average dimension of similar to 10 mu m are demonstrated. For validation, a sapphire-supported (SaS) nanopore chip, with a 100 times larger membrane area than silicon-supported (SiS) nanopore, showed 130 times smaller capacitance (10 pF) and similar to 2.5 times smaller root-mean-square (RMS) noise current (similar to 20 pA over 100 kHz bandwidth). Tested with lk bp double-stranded DNA, the SaS nanopore enabled sensing at microsecond speed with a signal-to-noise ratio of 21, compared to 11 from a SiS nanopore. This SaS nanopore presents a manufacturable platform feasible for biosensing as well as a wide variety of MEMS applications.
引用
收藏
页码:354 / 357
页数:4
相关论文
共 50 条
  • [31] Low-noise device
    Gupta, Madhu S.
    IEEE MICROWAVE MAGAZINE, 2007, 8 (06) : 136 - 136
  • [32] LOW-NOISE BOLOMETER
    ADERIKHIN, VI
    MEASUREMENT TECHNIQUES, 1980, 23 (02) : 151 - 153
  • [33] Systematic experimental analysis of an optical sensing microwave low-noise amplifier
    Caddemi, Alina
    Cardillo, Emanuele
    IET MICROWAVES ANTENNAS & PROPAGATION, 2019, 13 (15) : 2678 - 2681
  • [34] Low-Noise Drive of a Micromachined Resonant Accelerometer with Separated Sensing and Actuation
    Fang, Zhengxiang
    Yin, Yonggang
    Liu, Yunfeng
    Han, Fengtian
    2018 IEEE SENSORS, 2018, : 1652 - 1655
  • [35] Nanocrystalline graphite nanopores for DNA sensing
    Wang, Yunjiao
    Cheng, Min
    Wang, Liang
    Zhou, Daming
    He, Shixuan
    Liang, Liyuan
    Zhang, Feng
    Liu, Chang
    Wang, Deqiang
    Yuan, Jiahu
    CARBON, 2021, 176 (176) : 271 - 278
  • [36] HIGH-Q THERMOELECTRIC-STABILIZED SAPPHIRE MICROWAVE RESONATORS FOR LOW-NOISE APPLICATIONS
    TOBAR, ME
    GILES, AJ
    EDWARDS, S
    SEARLS, JH
    IEEE TRANSACTIONS ON ULTRASONICS FERROELECTRICS AND FREQUENCY CONTROL, 1994, 41 (03) : 391 - 396
  • [37] COOLED, ULTRAHIGH-Q, SAPPHIRE DIELECTRIC RESONATORS FOR LOW-NOISE, MICROWAVE SIGNAL GENERATION
    DRISCOLL, MM
    HAYNES, JT
    JELEN, RA
    WEINERT, RW
    GAVALER, JR
    TALVACCHIO, J
    WAGNER, GR
    ZAKI, KA
    LIANG, XP
    IEEE TRANSACTIONS ON ULTRASONICS FERROELECTRICS AND FREQUENCY CONTROL, 1992, 39 (03) : 405 - 411
  • [38] Compact Low-Noise Photonic Microwave Generation From Commercial Low-Noise Lasers
    Bouchand, Romain
    Xie, Xiaopeng
    Giunta, Michele
    Haensel, Wolfgang
    Lezius, Matthias
    Holzwarth, Ronald
    Alexandre, Christophe
    Tremblin, Pierre-Alain
    Santarelli, Giorgio
    Le Coq, Yann
    IEEE PHOTONICS TECHNOLOGY LETTERS, 2017, 29 (16) : 1403 - 1406
  • [39] Low-Noise Stemless PNA Beacons for Sensitive DNA and RNA Detection
    Socher, Elke
    Bethge, Lucas
    Knoll, Andrea
    Jungnick, Nadine
    Herrmann, Andreas
    Seitz, Oliver
    ANGEWANDTE CHEMIE-INTERNATIONAL EDITION, 2008, 47 (49) : 9555 - 9559
  • [40] Integrated Low-Noise Current Amplifier for Glass-Based Nanopore Sensing
    Ciccarella, P.
    Carminati, M.
    Ferrari, G.
    Fraccari, R.
    Bahrami, A.
    2014 10TH CONFERENCE ON PH.D. RESEARCH IN MICROELECTRONICS AND ELECTRONICS (PRIME 2014), 2014,