SAPPHIRE-SUPPORTED NANOPORES FOR LOW-NOISE DNA SENSING

被引:0
|
作者
Xia, Pengkun [1 ,2 ]
Zuo, Jiawei [1 ,2 ]
Choi, Shinhyuk [1 ,2 ]
Chen, Xiahui [1 ,2 ]
Bai, Jing [1 ]
Wang, Chao [1 ,2 ]
机构
[1] Arizona State Univ, Sch Elect Comp & Energy Engn, Tempe, AZ 85281 USA
[2] Arizona State Univ, Biodesign Ctr Single Mol Biophys, Tempe, AZ 85281 USA
基金
美国国家科学基金会;
关键词
solid-state nanopores; low noise; low capacitance; signal-to-noise ratio; insulating sapphire substrates; MEMS;
D O I
10.1109/MEMS51782.2021.9375372
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
Solid-state nanopore sensors have broad applications from single-molecule biosensing to diagnostics and sequencing. Prevalent nanopore sensors are fabricated on silicon (Si) substrates through micromachining, however, the high capacitive noise resulting from Si conductivity has seriously limited both their sensing accuracy and recording speed. A new approach is proposed here for forming nanopore membranes on insulating sapphire wafers by anisotropic wet etching of sapphire through micropatterned triangular masks. Reproducible fonnation of small membranes with an average dimension of similar to 10 mu m are demonstrated. For validation, a sapphire-supported (SaS) nanopore chip, with a 100 times larger membrane area than silicon-supported (SiS) nanopore, showed 130 times smaller capacitance (10 pF) and similar to 2.5 times smaller root-mean-square (RMS) noise current (similar to 20 pA over 100 kHz bandwidth). Tested with lk bp double-stranded DNA, the SaS nanopore enabled sensing at microsecond speed with a signal-to-noise ratio of 21, compared to 11 from a SiS nanopore. This SaS nanopore presents a manufacturable platform feasible for biosensing as well as a wide variety of MEMS applications.
引用
收藏
页码:354 / 357
页数:4
相关论文
共 50 条
  • [1] Sapphire-supported nanopores for low-noise DNA sensing
    Xia, Pengkun
    Zuo, Jiawei
    Paudel, Pravin
    Choi, Shinhyuk
    Chen, Xiahui
    Laskar, Md Ashiqur Rahman
    Bai, Jing
    Song, Weisi
    Im, JongOne
    Wang, Chao
    BIOSENSORS & BIOELECTRONICS, 2021, 174
  • [2] DNA Trans location through Low-Noise Glass Nanopores
    Steinbock, Lorenz J.
    Bulushev, Roman D.
    Krishnan, Swati
    Raillon, Camille
    Radenovic, Aleksandra
    ACS NANO, 2013, 7 (12) : 11255 - 11262
  • [3] Heterogeneous sapphire-supported low-loss photonic platform
    Wang Y.
    Guo Y.
    Zhou Y.
    Xie H.
    Tang H.X.
    Optics Express, 2024, 32 (11) : 20146 - 20152
  • [4] Low-Noise Dual-Channel Current Amplifier for DNA Sensing with Solid-State Nanopores
    Carminati, M.
    Ferrari, G.
    Sampietro, M.
    Ivanov, A. P.
    Albrecht, T.
    2012 19th IEEE International Conference on Electronics, Circuits and Systems (ICECS), 2012, : 817 - 820
  • [5] LOW-NOISE FIBEROPTIC ROTATION SENSING
    BOHM, K
    RUSSER, P
    WEIDEL, E
    ULRICH, R
    OPTICS LETTERS, 1981, 6 (02) : 64 - 66
  • [6] Low-noise SiGe pMODFETs on sapphire with 116 GHz fmax
    Koester, S.J.
    Hammond, R.
    Chu, J.O.
    Mooney, P.M.
    Ott, J.A.
    Webster, C.S.
    Lagnado, I.
    de la Houssaye, P.R.
    Annual Device Research Conference Digest, 2000, : 31 - 32
  • [7] A FULLY RECONFIGURABLE LOW-NOISE BIOPOTENTIAL SENSING AMPLIFIER
    Wang, Tzu-Yun
    Lai, Min-Rui
    Twigg, Christopher M.
    Peng, Sheng-Yu
    2013 IEEE BIOMEDICAL CIRCUITS AND SYSTEMS CONFERENCE (BIOCAS), 2013, : 234 - 237
  • [8] LOW-NOISE NOISE
    PUMPLIN, J
    JOURNAL OF THE ACOUSTICAL SOCIETY OF AMERICA, 1985, 78 (01): : 100 - 104
  • [9] High-Resolution and Low-Noise Single-Molecule Sensing with Bio-Inspired Solid-State Nanopores
    Zhou, Wanqi
    Guo, Yufeng
    Guo, Wanlin
    Qiu, Hu
    JOURNAL OF PHYSICAL CHEMISTRY LETTERS, 2024, 15 (20): : 5556 - 5563
  • [10] A 2.4-GHz silicon-on-sapphire CMOS low-noise amplifier
    Johnson, RA
    Chang, CE
    delaHoussaye, PR
    Wood, ME
    Garcia, GA
    Asbeck, PM
    Lagnado, I
    IEEE MICROWAVE AND GUIDED WAVE LETTERS, 1997, 7 (10): : 350 - 352