Combination of steepest descent and BFGS methods for nonconvex nonsmooth optimization

被引:4
|
作者
Yousefpour, Rohollah [1 ]
机构
[1] Univ Mazandaran, Dept Math Sci, Babol Sar, Iran
关键词
Lipschitz functions; Wolfe conditions; Nonsmooth line search method; Nonsmooth BFGS method; MEMORY BUNDLE METHOD; CONVERGENCE; POINT; ALGORITHMS;
D O I
10.1007/s11075-015-0034-2
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, a method is developed for solving nonsmooth nonconvex minimization problems. This method extends the classical BFGS framework. First, we generalize the Wolfe conditions for locally Lipschitz functions and prove that this generalization is well defined. Then, a line search algorithm is presented to find a step length satisfying the generalized Wolfe conditions. Next, the Goldstein e-subgradient is approximated by an iterative method and a descent direction is computed using a positive definite matrix. This matrix is updated using the BFGS method. Finally, a minimization algorithm based on the BFGS method is described. The algorithm is implemented in MATLAB and numerical results using it are reported.
引用
收藏
页码:57 / 90
页数:34
相关论文
共 50 条
  • [31] Accelerated Primal-Dual Gradient Descent with Linesearch for Convex, Nonconvex, and Nonsmooth Optimization Problems
    S. V. Guminov
    Yu. E. Nesterov
    P. E. Dvurechensky
    A. V. Gasnikov
    Doklady Mathematics, 2019, 99 : 125 - 128
  • [32] On spectral properties of steepest descent methods
    De Asmundis, Roberta
    di Serafino, Daniela
    Riccio, Filippo
    Toraldo, Gerardo
    IMA JOURNAL OF NUMERICAL ANALYSIS, 2013, 33 (04) : 1416 - 1435
  • [33] A Riemannian BFGS Method for Nonconvex Optimization Problems
    Huang, Wen
    Absil, P. -A.
    Gallivan, Kyle A.
    NUMERICAL MATHEMATICS AND ADVANCED APPLICATIONS (ENUMATH 2015), 2016, 112 : 627 - 634
  • [34] Oracle Complexity in Nonsmooth Nonconvex Optimization
    Kornowski, Guy
    Shamir, Ohad
    ADVANCES IN NEURAL INFORMATION PROCESSING SYSTEMS 34 (NEURIPS 2021), 2021, 34
  • [35] Robustness in Nonsmooth Nonconvex Optimization Problems
    Mashkoorzadeh, F.
    Movahedian, N.
    Nobakhtian, S.
    POSITIVITY, 2021, 25 (02) : 701 - 729
  • [36] Stabilization via nonsmooth, nonconvex optimization
    Burke, James V.
    Henrion, Didier
    Lewis, Adrian S.
    Overton, Michael L.
    IEEE TRANSACTIONS ON AUTOMATIC CONTROL, 2006, 51 (11) : 1760 - 1769
  • [37] Robustness in Nonsmooth Nonconvex Optimization Problems
    F. Mashkoorzadeh
    N. Movahedian
    S. Nobakhtian
    Positivity, 2021, 25 : 701 - 729
  • [38] Subgradient Method for Nonconvex Nonsmooth Optimization
    Bagirov, A. M.
    Jin, L.
    Karmitsa, N.
    Al Nuaimat, A.
    Sultanova, N.
    JOURNAL OF OPTIMIZATION THEORY AND APPLICATIONS, 2013, 157 (02) : 416 - 435
  • [39] Subgradient Method for Nonconvex Nonsmooth Optimization
    A. M. Bagirov
    L. Jin
    N. Karmitsa
    A. Al Nuaimat
    N. Sultanova
    Journal of Optimization Theory and Applications, 2013, 157 : 416 - 435
  • [40] Oracle Complexity in Nonsmooth Nonconvex Optimization
    Kornowski, Guy
    Shamir, Ohad
    JOURNAL OF MACHINE LEARNING RESEARCH, 2022, 23