Spin-wave eigenmodes in direct-write 3D nanovolcanoes

被引:28
|
作者
Dobrovolskiy, O. V. [1 ]
Vovk, N. R. [2 ,3 ]
Bondarenko, A. V. [2 ]
Bunyaev, S. A. [2 ]
Lamb-Camarena, S. [1 ]
Zenbaa, N. [1 ]
Sachser, R. [4 ]
Barth, S. [4 ]
Guslienko, K. Y. [5 ,6 ]
Chumak, A. V. [1 ]
Huth, M. [4 ]
Kakazei, G. N. [2 ]
机构
[1] Univ Vienna, Fac Phys, A-1090 Vienna, Austria
[2] Univ Porto, Inst Phys Adv Mat Nanotechnol & Photon IFIMUP, Dept Fis & Astron, P-4169007 Porto, Portugal
[3] Kharkov Natl Univ, Dept Phys, Svobody Sq 4, UA-61022 Kharkiv, Ukraine
[4] Goethe Univ, Phys Inst, D-60438 Frankfurt, Germany
[5] Univ Basque Country, UPV EHU, Dept Polimeros & Mat Avanzados Fis Quim & Tecnol, Div Fis Mat, San Sebastian 20018, Spain
[6] Basque Fdn Sci, Ikerbasque, Bilbao 48009, Spain
基金
奥地利科学基金会;
关键词
DOT;
D O I
10.1063/5.0044325
中图分类号
O59 [应用物理学];
学科分类号
摘要
Extending nanostructures into the third dimension has become a major research avenue in modern magnetism, superconductivity, and spintronics, because of geometry-, curvature-, and topology-induced phenomena. Here, we introduce Co-Fe nanovolcanoes-nanodisks overlaid by nanorings-as purpose-engineered 3D architectures for nanomagnonics, fabricated by focused electron beam-induced deposition. We use both perpendicular spin-wave resonance measurements and micromagnetic simulations to demonstrate that the rings encircling the volcano craters harbor the highest-frequency eigenmodes, while the lower-frequency eigenmodes are concentrated within the volcano crater, due to the non-uniformity of the internal magnetic field. By varying the crater diameter, we demonstrate the deliberate tuning of higher-frequency eigenmodes without affecting the lowest-frequency mode. Thereby, the extension of 2D nanodisks into the third dimension allows one to engineer their lowest eigenfrequency by using 3D nanovolcanoes with 30% smaller footprints. The presented nanovolcanoes can be viewed as multi-mode microwave resonators and 3D building blocks for nanomagnonics.
引用
收藏
页数:6
相关论文
共 50 条
  • [1] Direct-write 3D nanolithography at cryogenic temperatures
    Bresin, M.
    Toth, M.
    Dunn, K. A.
    NANOTECHNOLOGY, 2013, 24 (03)
  • [2] Direct-Write 3D Nanoprinting of Plasmonic Structures
    Winkler, Robert
    Schrnidt, Franz-Philipp
    Haselinann, Ulrich
    Fowlkes, Jason D.
    Lewis, Brett B.
    Kothleitner, Gerald
    Rack, Philip D.
    Plank, Harald
    ACS APPLIED MATERIALS & INTERFACES, 2017, 9 (09) : 8233 - 8240
  • [3] Direct-write 3D printing of NdFeB bonded magnets
    Compton, Brett Gibson
    Kemp, James William
    Novikov, Timofei V.
    Pack, Robert Cody
    Nlebedim, Cajetan I.
    Duty, Chad Edward
    Rios, Orlando
    Paranthaman, M. Parans
    MATERIALS AND MANUFACTURING PROCESSES, 2018, 33 (01) : 109 - 113
  • [4] Additive manufacturing of hydrogel composites by direct-write 3D printing
    Nelson, Alshakim
    ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY, 2018, 255
  • [5] Dual-Responsive Hydrogels for Direct-Write 3D Printing
    Zhang, Musan
    Vora, Ankit
    Han, Wei
    Wojtecki, Rudy J.
    Maune, Hareem
    Le, Alexander B. A.
    Thompson, Leslie E.
    McClelland, Gary M.
    Ribet, Federico
    Engler, Amanda C.
    Nelson, Alshakim
    MACROMOLECULES, 2015, 48 (18) : 6482 - 6488
  • [6] Light-assisted direct-write of 3D functional biomaterials
    Hribar, Kolin C.
    Soman, Pranav
    Warner, John
    Chung, Peter
    Chen, Shaochen
    LAB ON A CHIP, 2014, 14 (02) : 268 - 275
  • [7] Direct-write 3D printing of polyimide-silica aerogel composites
    Wang L.
    Men J.
    Feng J.
    Jiang Y.
    Feng J.
    Fuhe Cailiao Xuebao/Acta Materiae Compositae Sinica, 2024, 41 (04): : 1879 - 1889
  • [8] Direct-Write Assembly of 3D Hydrogel Scaffolds for Guided Cell Growth
    Barry, Robert A., III
    Shepherd, Robert F.
    Hanson, Jennifer N.
    Nuzzo, Ralph G.
    Wiltzius, Pierre
    Lewis, Jennifer A.
    ADVANCED MATERIALS, 2009, 21 (23) : 2407 - +
  • [9] Direct-write Assembly of 3d Hydroxyapatite for Segmental Mandibular Bone Reconstruction
    Ghosh, S.
    Das, S.
    Mehra, P.
    TISSUE ENGINEERING PART A, 2015, 21 : S360 - S360
  • [10] Direct-write/cure conductive polymer nanocomposites for 3D structural electronics
    Lu, Yanfeng
    Vatani, Morteza
    Choi, Jae-Won
    JOURNAL OF MECHANICAL SCIENCE AND TECHNOLOGY, 2013, 27 (10) : 2929 - 2934