Spin-wave eigenmodes in direct-write 3D nanovolcanoes

被引:28
|
作者
Dobrovolskiy, O. V. [1 ]
Vovk, N. R. [2 ,3 ]
Bondarenko, A. V. [2 ]
Bunyaev, S. A. [2 ]
Lamb-Camarena, S. [1 ]
Zenbaa, N. [1 ]
Sachser, R. [4 ]
Barth, S. [4 ]
Guslienko, K. Y. [5 ,6 ]
Chumak, A. V. [1 ]
Huth, M. [4 ]
Kakazei, G. N. [2 ]
机构
[1] Univ Vienna, Fac Phys, A-1090 Vienna, Austria
[2] Univ Porto, Inst Phys Adv Mat Nanotechnol & Photon IFIMUP, Dept Fis & Astron, P-4169007 Porto, Portugal
[3] Kharkov Natl Univ, Dept Phys, Svobody Sq 4, UA-61022 Kharkiv, Ukraine
[4] Goethe Univ, Phys Inst, D-60438 Frankfurt, Germany
[5] Univ Basque Country, UPV EHU, Dept Polimeros & Mat Avanzados Fis Quim & Tecnol, Div Fis Mat, San Sebastian 20018, Spain
[6] Basque Fdn Sci, Ikerbasque, Bilbao 48009, Spain
基金
奥地利科学基金会;
关键词
DOT;
D O I
10.1063/5.0044325
中图分类号
O59 [应用物理学];
学科分类号
摘要
Extending nanostructures into the third dimension has become a major research avenue in modern magnetism, superconductivity, and spintronics, because of geometry-, curvature-, and topology-induced phenomena. Here, we introduce Co-Fe nanovolcanoes-nanodisks overlaid by nanorings-as purpose-engineered 3D architectures for nanomagnonics, fabricated by focused electron beam-induced deposition. We use both perpendicular spin-wave resonance measurements and micromagnetic simulations to demonstrate that the rings encircling the volcano craters harbor the highest-frequency eigenmodes, while the lower-frequency eigenmodes are concentrated within the volcano crater, due to the non-uniformity of the internal magnetic field. By varying the crater diameter, we demonstrate the deliberate tuning of higher-frequency eigenmodes without affecting the lowest-frequency mode. Thereby, the extension of 2D nanodisks into the third dimension allows one to engineer their lowest eigenfrequency by using 3D nanovolcanoes with 30% smaller footprints. The presented nanovolcanoes can be viewed as multi-mode microwave resonators and 3D building blocks for nanomagnonics.
引用
收藏
页数:6
相关论文
共 50 条
  • [21] Direct-write assembly of 3D scaffolds using colloidal calcium phosphates inks
    Richard, Raquel C.
    Oliveira, Renata N.
    Soares, Gloria D. A.
    Thire, Rossana M. S. M.
    MATERIA-RIO DE JANEIRO, 2014, 19 (01): : 61 - 67
  • [22] Lignin Laser Lithography: A Direct-Write Method for Fabricating 3D Graphene Electrodes for Microsupercapacitors
    Zhang, Wenli
    Lei, Yongjiu
    Ming, Fangwang
    Jiang, Qiu
    Costa, Pedro M. F. J.
    Alshareef, Husam N.
    ADVANCED ENERGY MATERIALS, 2018, 8 (27)
  • [23] Direct-write 3D printing and characterization of a GelMA-based biomaterial for intracorporeal tissue
    Adib, A. Asghari
    Sheikhi, A.
    Shahhosseini, M.
    Simeunovic, A.
    Wu, S.
    Castro, C. E.
    Zhao, R.
    Khademhosseini, A.
    Hoelzle, D. J.
    BIOFABRICATION, 2020, 12 (04)
  • [24] Direct-write of free-form building blocks for artificial magnetic 3D lattices
    Keller, Lukas
    Al Mamoori, Mohanad K. I.
    Pieper, Jonathan
    Gspan, Christian
    Stockem, Irina
    Schroeder, Christian
    Barth, Sven
    Winkler, Robert
    Plank, Harald
    Pohlit, Merlin
    Mueller, Jens
    Huth, Michael
    SCIENTIFIC REPORTS, 2018, 8
  • [25] Direct-Write Assembly of 3D Silk/Hydroxyapatite Scaffolds for Bone Co-Cultures
    Sun, Lin
    Parker, Sara T.
    Syoji, Daisuke
    Wang, Xiuli
    Lewis, Jennifer A.
    Kaplan, David L.
    ADVANCED HEALTHCARE MATERIALS, 2012, 1 (06) : 729 - 735
  • [26] Synthesis, Rheology, and Assessment of 3D Printability of Multifunctional Polyesters for Extrusion-Based Direct-Write 3D Printing
    Jain, Tanmay
    Tseng, Yen-Ming
    Tantisuwanno, Chinnapatch
    Menefee, Joshua
    Shahrokhian, Aida
    Isayeva, Irada
    Joy, Abraham
    ACS APPLIED POLYMER MATERIALS, 2021, 3 (12) : 6618 - 6631
  • [27] Direct-write UV laser microfabrication of 3D structures in lithium-alumosilicate glass
    Hansen, WW
    Janson, SW
    Helvajian, H
    LASER APPLICATIONS IN MICROELECTRONIC AND OPTOELECTRONIC MANUFACTURING II, 1997, 2991 : 104 - 112
  • [28] Direct-write of free-form building blocks for artificial magnetic 3D lattices
    Lukas Keller
    Mohanad K. I. Al Mamoori
    Jonathan Pieper
    Christian Gspan
    Irina Stockem
    Christian Schröder
    Sven Barth
    Robert Winkler
    Harald Plank
    Merlin Pohlit
    Jens Müller
    Michael Huth
    Scientific Reports, 8
  • [29] Direct-write 3D printing of UV-curable composites with continuous carbon fiber
    Abdullah, Arif M.
    Ding, Yuchen
    He, Xu
    Dunn, Martin
    Yu, Kai
    JOURNAL OF COMPOSITE MATERIALS, 2023, 57 (04) : 851 - 863
  • [30] Acoustoplastic metal direct-write: Towards solid aluminum 3D printing in ambient conditions
    Deshpande, Anagh
    Hsu, Keng
    ADDITIVE MANUFACTURING, 2018, 19 : 73 - 80