Origin of the large band-gap bowing in highly mismatched semiconductor alloys

被引:60
|
作者
Wu, J [1 ]
Walukiewicz, W
Yu, KM
Ager, JW
Haller, EE
Miotkowski, I
Ramdas, AK
Su, CH
Sou, IK
Perera, RCC
Denlinger, JD
机构
[1] Univ Calif Berkeley, Appl Sci & Technol Grad Grp, Berkeley, CA 94720 USA
[2] Univ Calif Berkeley, Lawrence Berkeley Lab, Div Mat Sci, Berkeley, CA 94720 USA
[3] Univ Calif Berkeley, Dept Mat Sci & Engn, Berkeley, CA 94720 USA
[4] Purdue Univ, Dept Phys, W Lafayette, IN 47907 USA
[5] NASA, George C Marshall Space Flight Ctr, Sci Directorate SD46, Huntsville, AL 35812 USA
[6] Hong Kong Univ Sci & Technol, Dept Phys, Kowloon, Hong Kong, Peoples R China
[7] Lawrence Berkeley Lab, Ctr Xray Opt, Berkeley, CA 94720 USA
[8] Lawrence Berkeley Lab, Adv Light Source, Berkeley, CA 94720 USA
关键词
D O I
10.1103/PhysRevB.67.035207
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
Photomodulated reflection, optical absorption, and photoluminescence spectroscopies have been used to measure the composition dependence of interband optical transitions in ZnSe1-xTex and ZnS1-xTex alloys. The results reveal entirely different origins of the large band-gap bowing for small and large Te content. On the Te-rich side, the reduction of the band gap is well explained by the band anticrossing interaction between the Se or S localized states and the ZnTe conduction-band states. On the Se- or S-rich side, an interaction between the localized Te states and the degenerate Gamma valence bands of ZnSe or ZnS is responsible for the band-gap reduction and the rapid increase of the spin-orbit splitting with increasing Te concentration. Results of the soft-x-ray emission experiment provide direct proof of the valence-band anticrossing interaction. The band-gap bowing in the entire composition range is accounted for by a linear interpolation between the conduction-band anticrossing and valence-band anticrossing models.
引用
收藏
页数:5
相关论文
共 50 条
  • [32] Band anticrossing in highly mismatched group II-VI semiconductor alloys
    K. M. Yu
    J. Wu
    W. Walukiewicz
    J. W. Beeman
    J. W. Ager
    E. E. Haller
    I. Miotkowski
    A. Ramdas
    Journal of Electronic Materials, 2002, 31 : 754 - 758
  • [33] MAGNITUDE AND ORIGIN OF THE BAND-GAP IN NIO
    SAWATZKY, GA
    ALLEN, JW
    PHYSICAL REVIEW LETTERS, 1984, 53 (24) : 2339 - 2342
  • [34] Band anticrossing in highly mismatched group II-VI semiconductor alloys
    Yu, KM
    Wu, J
    Walukiewicz, W
    Beeman, JW
    Ager, JW
    Haller, EE
    Miotkowski, I
    Ramdas, A
    JOURNAL OF ELECTRONIC MATERIALS, 2002, 31 (07) : 754 - 758
  • [35] Theory of band gap bowing of disordered substitutional II–VI and III–V semiconductor alloys
    D. Mourad
    G. Czycholl
    The European Physical Journal B, 2012, 85
  • [36] NONMONOTONIC DEPENDENCE OF THE WIDTH OF THE BAND-GAP OF A SEMICONDUCTOR FILM WITH A NEAR-ZERO BAND-GAP
    GERCHIKOV, LG
    SUBASHIEV, AV
    SOVIET PHYSICS SEMICONDUCTORS-USSR, 1989, 23 (12): : 1368 - 1370
  • [37] Band gap bowing in quaternary nitride semiconducting alloys
    Gorczyca, I.
    Suski, T.
    Christensen, N. E.
    Svane, A.
    APPLIED PHYSICS LETTERS, 2011, 98 (24)
  • [38] Anomalous band-gap bowing of AlN1-xPx alloy
    Winiarski, M. J.
    Polak, M.
    Scharoch, P.
    JOURNAL OF ALLOYS AND COMPOUNDS, 2013, 575 : 158 - 161
  • [39] Bowing parameter of the band-gap energy of GaNxAs1-x
    Bi, WG
    Tu, CW
    APPLIED PHYSICS LETTERS, 1997, 70 (12) : 1608 - 1610
  • [40] Effect of a large number of random vacancies on band-gap widening in a porous semiconductor
    Sukpitak, J
    Sa-Yakanit, V
    Sritrakool, W
    INTERNATIONAL JOURNAL OF MODERN PHYSICS B, 2003, 17 (07): : 1109 - 1115