Chip-based wide field-of-view nanoscopy

被引:0
|
作者
Diekmann, Robin [1 ]
Helle, Oystein I. [2 ]
Oie, Cristina I. [2 ]
McCourt, Peter [3 ]
Huser, Thomas R. [1 ,4 ,5 ]
Schuettpelz, Mark [1 ]
Ahluwalia, Balpreet S. [2 ]
机构
[1] Univ Bielefeld, Dept Phys, D-33615 Bielefeld, Germany
[2] UiT Arctic Univ Norway, Dept Phys & Technol, N-9037 Tromso, Norway
[3] UiT Arctic Univ Norway, Dept Med Biol, N-9037 Tromso, Norway
[4] Univ Calif Davis, Dept Internal Med, Davis, CA 95817 USA
[5] Univ Calif Davis, NSF Ctr Biophoton, Davis, CA 95817 USA
基金
欧洲研究理事会;
关键词
SINGLE-MOLECULE LOCALIZATION; OPTICAL RECONSTRUCTION MICROSCOPY; FLUORESCENCE MICROSCOPY; RESOLUTION LIMIT; CELLS; LIVER; EXCITATION; GUIDE; MICROPARTICLES; ILLUMINATION;
D O I
10.1038/NPHOTON.2017.55
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
Present optical nanoscopy techniques use a complex microscope for imaging and a simple glass slide to hold the sample. Here, we demonstrate the inverse: the use of a complex, but mass-producible optical chip, which hosts the sample and provides a waveguide for the illumination source, and a standard low-cost microscope to acquire super-resolved images via two different approaches. Waveguides composed of a material with high refractive-index contrast provide a strong evanescent field that is used for single-molecule switching and fluorescence excitation, thus enabling chip-based single-molecule localization microscopy. Additionally, multimode interference patterns induce spatial fluorescence intensity variations that enable fluctuation-based super-resolution imaging. As chip-based nanoscopy separates the illumination and detection light paths, total-internal-reflection fluorescence excitation is possible over a large field of view, with up to 0.5 mm x 0.5 mm being demonstrated. Using multicolour chip-based nanoscopy, we visualize fenestrations in liver sinusoidal endothelial cells.
引用
收藏
页码:322 / +
页数:9
相关论文
共 50 条
  • [21] Wide field-of-view foveated imaging system
    赵小侠
    谢永军
    赵卫
    Chinese Optics Letters, 2008, (08) : 561 - 563
  • [22] StarNAV with a wide field-of-view optical sensor
    McKee, Paul
    Nguyen, Hoang
    Kudenov, Michael W.
    Christian, John A.
    ACTA ASTRONAUTICA, 2022, 197 : 220 - 234
  • [23] StarNAV with a wide field-of-view optical sensor
    McKee, Paul
    Nguyen, Hoang
    Kudenov, Michael W.
    Christian, John A.
    Acta Astronautica, 2022, 197 : 220 - 234
  • [24] WFIS: A Wide Field-of-View Imaging Spectrometer
    Haring, RE
    Williams, F
    Vanstone, G
    Putnam, G
    INFRARED SPACEBORNE REMOTE SENSING VII, 1999, 3759 : 305 - 314
  • [25] WIDE FIELD-OF-VIEW MULTIDETECTOR INFRARED RADIOMETERS
    CAMPBELL, FD
    JOURNAL OF THE OPTICAL SOCIETY OF AMERICA, 1965, 55 (05) : 606 - &
  • [26] Wide field-of-view foveated imaging system
    Zhao, Xiaoxia
    Xie, Yongjun
    Zhao, Wei
    CHINESE OPTICS LETTERS, 2008, 6 (08) : 561 - 563
  • [27] Exposure apparatus based on reflection for wide field-of-view holographic stereogram
    Wang Xu
    Qian Ke-Yuan
    AOPC 2015: ADVANCED DISPLAY TECHNOLOGY; AND MICRO/NANO OPTICAL IMAGING TECHNOLOGIES AND APPLICATIONS, 2015, 9672
  • [28] Wide field-of-view atmospheric Cherenkov telescope based on refractive lens
    Cai, H.
    Zhang, Y.
    Liu, C.
    Gao, Q.
    Wang, Z.
    Chen, T. -L.
    Zhang, X. -Y.
    Feng, Y. -L.
    Wang, Q.
    Tian, Z.
    Guo, Y. -Q.
    Gou, Q. -B.
    Danzengluobu
    Liu, M. -Y.
    Li, H. -J.
    Yao, Z. -E.
    JOURNAL OF INSTRUMENTATION, 2017, 12
  • [29] Calibration of camera with wide field-of-view based on spliced small targets
    Huo, Ju
    Yang, Ning
    Yang, Ming
    Dong, Wenbo
    Hongwai yu Jiguang Gongcheng/Infrared and Laser Engineering, 2013, 42 (06): : 1474 - 1479
  • [30] Wide field-of-view microscope based on holographic focus grid illumination
    Wu, Jigang
    Cui, Xiquan
    Zheng, Guoan
    Wang, Ying Min
    Lee, Lap Man
    Yang, Changhuei
    OPTICS LETTERS, 2010, 35 (13) : 2188 - 2190