Thermal modeling and uncertainty quantification of tool for automated garment assembly

被引:0
|
作者
Castrillon, Nicolas [1 ]
Rock, Avery [1 ]
Zohdi, Tarek I. [1 ]
机构
[1] Univ Calif Berkeley, Dept Mech Engn, Berkeley, CA 94720 USA
关键词
Uncertainty quantification; Finite element method; Thermal modeling; Automation; Garments; SENSITIVITY-ANALYSIS; OPTIMIZATION; DESIGN;
D O I
10.1007/s00466-022-02215-5
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this work, a thermal Finite Element model is developed to simulate the performance of a blade-like tool for robotic work cells performing automated garment production using a novel thermoplastic stiffening layer. Uncertainty quantification and sensitivity analysis are applied to determine the most important design properties and optimize key performance metrics for swift and reliable garment assembly. Attention is focused on the geometric and thermal design properties that minimize sensitivity to environmental conditions while maximizing expected productivity. An example design is shown for illustrative purposes. This work may inform future design innovation for similar heating tools and reduce the need for physical experiments and long calibration times on the factory floor.
引用
收藏
页码:879 / 889
页数:11
相关论文
共 50 条
  • [1] Thermal modeling and uncertainty quantification of tool for automated garment assembly
    Nicolas Castrillon
    Avery Rock
    Tarek I. Zohdi
    Computational Mechanics, 2022, 70 : 879 - 889
  • [2] Quantification of thermal conductivity uncertainty for basin modeling
    Elison, Patrick
    Niederau, Jan
    Vogt, Christian
    Clauser, Christoph
    AAPG BULLETIN, 2019, 103 (08) : 1787 - 1809
  • [3] MECHATRONICS APPLIED TO LOW-COST AUTOMATED GARMENT ASSEMBLY
    PRESTON, ME
    KHAKBIZ, H
    MECHATRONICS, 1995, 5 (2-3) : 321 - 346
  • [4] Uncertainty Quantification in Materials Modeling
    Dienstfrey, Andrew
    Phelan, Frederick R., Jr.
    Christensen, Stephen
    Strachan, Alejandro
    Santosa, Fadil
    Boisvert, Ronald
    JOM, 2014, 66 (07) : 1342 - 1344
  • [5] Uncertainty Quantification in Chemical Modeling
    Mirzayeva, A.
    Slavinskaya, N. A.
    Abbasi, M.
    Starcke, J. H.
    Li, W.
    Frenklach, M.
    EURASIAN CHEMICO-TECHNOLOGICAL JOURNAL, 2018, 20 (01) : 33 - 43
  • [6] Uncertainty Quantification in Materials Modeling
    Andrew Dienstfrey
    Frederick R. Phelan
    Stephen Christensen
    Alejandro Strachan
    Fadil Santosa
    Ronald Boisvert
    JOM, 2014, 66 : 1342 - 1344
  • [7] A Novel Approach to Uncertainty Quantification in Groundwater Table Modeling by Automated Predictive Deep Learning
    Shahri, Abbas Abbaszadeh
    Shan, Chunling
    Larsson, Stefan
    NATURAL RESOURCES RESEARCH, 2022, 31 (03) : 1351 - 1373
  • [8] A Novel Approach to Uncertainty Quantification in Groundwater Table Modeling by Automated Predictive Deep Learning
    Abbas Abbaszadeh Shahri
    Chunling Shan
    Stefan Larsson
    Natural Resources Research, 2022, 31 : 1351 - 1373
  • [9] Uncertainty Quantification in State-Specific Modeling of Thermal Relaxation and Dissociation of Oxygen
    Wang, Xiaoyong
    Hong, Qizhen
    Yang, Chao
    Sun, Quanhua
    AIAA JOURNAL, 2023, 61 (06) : 2734 - 2738
  • [10] AutoDEUQ: Automated Deep Ensemble with Uncertainty Quantification
    Egele, Romain
    Maulik, Romit
    Raghavan, Krishnan
    Lusch, Bethany
    Guyon, Isabelle
    Balaprakash, Prasanna
    2022 26TH INTERNATIONAL CONFERENCE ON PATTERN RECOGNITION (ICPR), 2022, : 1908 - 1914