Universal function of the nonequilibrium phase transition of a nonlinear Polya urn

被引:4
|
作者
Nakayama, Kazuaki [1 ]
Mori, Shintaro [2 ]
机构
[1] Shinshu Univ, Fac Sci, Dept Math, Asahi 3-1-1, Matsumoto, Nagano 3908621, Japan
[2] Hirosaki Univ, Fac Sci & Technol, Dept Math & Phys, Bunkyo Cho 3, Hirosaki, Aomori 0368561, Japan
关键词
Autocorrelation - Stochastic systems - Differential equations;
D O I
10.1103/PhysRevE.104.014109
中图分类号
O35 [流体力学]; O53 [等离子体物理学];
学科分类号
070204 ; 080103 ; 080704 ;
摘要
We study the phase transition and the critical properties of a nonlinear Polya urn, which is a simple binary stochastic process X(t) is an element of {0, 1}, t = 1, ... ,with a feedback mechanism. Let f be a continuous function from the unit interval to itself, and z(t ) be the proportion of the first t variables X (1), ... , X (t) that take the value 1. X(t + 1) takes the value 1 with probability f [z(t )]. When the number of stable fixed points of f (z) changes, the system undergoes a nonequilibrium phase transition and the order parameter is the limit value of the autocorrelation function. When the system is Z2 symmetric, that is, f (z) = 1 - f (1 - z), a continuous phase transition occurs, and the autocorrelation function behaves asymptotically as ln(t + 1)-1/2g[ln(t + 1)/xi], with a suitable definition of the correlation length xi and the universal function g(x). We derive g(x) analytically using stochastic differential equations and the expansion about the strength of stochastic noise. g(x) determines the asymptotic behavior of the autocorrelation function near the critical point and the universality class of the phase transition.
引用
收藏
页数:10
相关论文
共 50 条
  • [21] Plasma crystal melting: A nonequilibrium phase transition
    Schweigert, VA
    Schweigert, IV
    Melzer, A
    Homann, A
    Piel, A
    PHYSICAL REVIEW LETTERS, 1998, 80 (24) : 5345 - 5348
  • [22] THE GRAVITATIONAL EFFECTS ON NONEQUILIBRIUM PHASE-TRANSITION
    XIA, TH
    ZEITSCHRIFT FUR FLUGWISSENSCHAFTEN UND WELTRAUMFORSCHUNG, 1985, 9 (05): : 315 - 317
  • [23] Simplest nonequilibrium phase transition into an absorbing state
    Barato, A. C.
    Bonachela, Juan A.
    Fiore, C. E.
    Hinrichsen, H.
    Munoz, Miguel A.
    PHYSICAL REVIEW E, 2009, 79 (04):
  • [24] Nonequilibrium Phase Transition in a Dilute Rydberg Ensemble
    Carr, C.
    Ritter, R.
    Wade, C. G.
    Adams, C. S.
    Weatherill, K. J.
    PHYSICAL REVIEW LETTERS, 2013, 111 (11)
  • [25] Nonequilibrium phase transition in a model for social influence
    Castellano, C
    Marsili, M
    Vespignani, A
    PHYSICAL REVIEW LETTERS, 2000, 85 (16) : 3536 - 3539
  • [26] Nonequilibrium Kinetics of the Initial Stage of a Phase Transition
    Zmievskaya, G. I.
    PHYSICS OF THE SOLID STATE, 2020, 62 (01) : 42 - 47
  • [27] Nonequilibrium Kinetics of the Initial Stage of a Phase Transition
    G. I. Zmievskaya
    Physics of the Solid State, 2020, 62 : 42 - 47
  • [28] The nonequilibrium phase and glass transition behavior of β-lactoglobulin
    Parker, R
    Noel, TR
    Brownsey, GJ
    Laos, K
    Ring, SG
    BIOPHYSICAL JOURNAL, 2005, 89 (02) : 1227 - 1236
  • [29] Nonequilibrium phase transition in rapidly expanding matter
    Mishustin, IN
    PHYSICAL REVIEW LETTERS, 1999, 82 (24) : 4779 - 4782
  • [30] Nonequilibrium Transport at a Dissipative Quantum Phase Transition
    Chung, Chung-Hou
    Le Hur, Karyn
    Vojta, Matthias
    Woelfle, Peter
    PHYSICAL REVIEW LETTERS, 2009, 102 (21)