Disease surveillance and data collection issues in epidemic modelling

被引:6
|
作者
Solomon, PJ [1 ]
Isham, VS
机构
[1] Univ Adelaide, Dept Appl Math, Adelaide, SA 5005, Australia
[2] UCL, Dept Stat Sci, London, England
关键词
D O I
10.1191/096228000701555145
中图分类号
R19 [保健组织与事业(卫生事业管理)];
学科分类号
摘要
This paper. is founded on a tutorial session given to the School on Modern Statistical Methods in Medical Research which was held at the International Centre for Theoretical Physics, Trieste in September 1999. We review the aims, scope and purposes of infectious disease surveillance including determining transmission information to underpin model structure and parameterization in epidemic modelling. The practical problems inherent in collecting surveillance data are illustrated by a study of HIV/AIDS in Cambodia. We also review the basic elements of mathematical models developed to represent the transmission dynamics of infectious diseases, and discuss reasons for the gap between mathematical epidemic models and available data.
引用
收藏
页码:259 / 277
页数:19
相关论文
共 50 条
  • [1] Multivariate modelling of infectious disease surveillance data
    Paul, M.
    Held, L.
    Toschke, A. M.
    [J]. STATISTICS IN MEDICINE, 2008, 27 (29) : 6250 - 6267
  • [2] A modelling approach for correcting reporting delays in disease surveillance data
    Bastos, Leonardo S.
    Economou, Theodoros
    Gomes, Marcelo F. C.
    Villela, Daniel A. M.
    Coelho, Flavio C.
    Cruz, Oswaldo G.
    Stoner, Oliver
    Bailey, Trevor
    Codeco, Claudia T.
    [J]. STATISTICS IN MEDICINE, 2019, 38 (22) : 4363 - 4377
  • [3] Epidemic predictions in an imperfect world: modelling disease spread with partial data
    Dawson, Peter M.
    Werkman, Marleen
    Brooks-Pollock, Ellen
    Tildesley, Michael J.
    [J]. PROCEEDINGS OF THE ROYAL SOCIETY B-BIOLOGICAL SCIENCES, 2015, 282 (1808)
  • [4] Data mining and machine learning approaches for prediction modelling of schistosomiasis disease vectors Epidemic disease prediction modelling
    Fusco, Terence
    Bi, Yaxin
    Wang, Haiying
    Browne, Fiona
    [J]. INTERNATIONAL JOURNAL OF MACHINE LEARNING AND CYBERNETICS, 2020, 11 (06) : 1159 - 1178
  • [5] Collection and integration of clinical data for surveillance
    Lober, WB
    Baer, A
    Karras, BT
    Duchin, JS
    [J]. MEDINFO 2004: PROCEEDINGS OF THE 11TH WORLD CONGRESS ON MEDICAL INFORMATICS, PT 1 AND 2, 2004, 107 : 1211 - 1215
  • [6] Electronic data collection to enhance disease surveillance at the slaughterhouse in a smallholder production system
    Falzon, Laura C.
    Ogola, Joseph G.
    Odinga, Christian O.
    Naboyshchikov, Leonid
    Fevre, Eric M.
    Berezowski, John
    [J]. SCIENTIFIC REPORTS, 2021, 11 (01)
  • [7] PREVENTION OF OCCUPATIONAL-DISEASE - PROBLEMS OF DATA-COLLECTION FOR ADEQUATE SURVEILLANCE
    ROSS, JB
    [J]. CANADIAN MEDICAL ASSOCIATION JOURNAL, 1992, 147 (10) : 1443 - 1445
  • [8] Electronic data collection to enhance disease surveillance at the slaughterhouse in a smallholder production system
    Laura C. Falzon
    Joseph G. Ogola
    Christian O. Odinga
    Leonid Naboyshchikov
    Eric M. Fèvre
    John Berezowski
    [J]. Scientific Reports, 11
  • [9] Machine learning and data mining for epidemic surveillance
    Kofod-Petersen, Anders
    [J]. MEDICAL JOURNAL OF AUSTRALIA, 2012, 196 (05) : 301 - 301
  • [10] Clinical research - Issues in data collection
    Weinstein, JN
    Deyo, RA
    [J]. SPINE, 2000, 25 (24) : 3104 - 3109