COVID-19 Pneumonia Diagnosis Using Chest X-ray Radiography and Deep Learning

被引:4
|
作者
Griner, Dalton [1 ]
Zhang, Ran [1 ,2 ]
Tie, Xin [1 ]
Zhang, Chengzhu [1 ]
Garrett, John [1 ,2 ]
Li, Ke [1 ,2 ]
Chen, Guang-Hong [1 ,2 ]
机构
[1] Univ Wisconsin, Dept Med Phys, Madison, WI 53705 USA
[2] Univ Wisconsin, Dept Radiol, Madison, WI 53705 USA
关键词
COVID-19; coronavirus; machine learning; deep learning; x-ray chest radiography; pneumonia;
D O I
10.1117/12.2581972
中图分类号
R318 [生物医学工程];
学科分类号
0831 ;
摘要
In the effort to contain the COVID-19 pandemic, quick and effective diagnosis is paramount in preventing the spread of the disease. While the reverse transcriptase polymerase chain reaction (RT-PCR) test is the gold standard method to identify COVID-19, the use of x-ray radiography (CXR) has been widely used in the clinical workup for patients suspected of infection as an additional means of diagnosis and treatment response monitoring. CXR is available in almost every medical center across the world, allowing a quick and protected means of identifying potential COVID-19 cases to subject to quarantine procedures. However, the major challenge with the use of CXR in COVID-19 diagnosis is its low sensitivity and specificity in current radiological practice due to the similarities in clinical presentation to other diseases. Machine learning methods, particularly deep learning, have been shown to perform extremely well in a variety of classification tasks, often exceeding human performance. To utilize these techniques, a large data set of over 12,000 CXR images, including over 6,000 confirmed COVID-19 positive cases, was collected to train and validate a deep learning model to differentiate COVID-19 pneumonia from other causes of CXR abnormalities. In this work we show that this deep learning method can differentiate between COVID-19 related pneumonia and non-COVID-19 pneumonia, with high sensitivity and specificity.
引用
收藏
页数:7
相关论文
共 50 条
  • [31] Analysing COVID-19 Pneumonia Severity through Chest X-ray Radiography: A Computational Approach
    Rekha, M.
    Kaaviya, K.
    Divakar, G.
    2ND INTERNATIONAL CONFERENCE ON SUSTAINABLE COMPUTING AND SMART SYSTEMS, ICSCSS 2024, 2024, : 1092 - 1097
  • [32] Screening of Viral Pneumonia and COVID-19 in Chest X-ray using Classical Machine Learning
    Fonseca, Afonso U.
    Vieira, Gabriel S.
    Soares, Fabrizzio
    2021 IEEE 45TH ANNUAL COMPUTERS, SOFTWARE, AND APPLICATIONS CONFERENCE (COMPSAC 2021), 2021, : 1936 - 1941
  • [33] Using a Deep Learning Model to Explore the Impact of Clinical Data on COVID-19 Diagnosis Using Chest X-ray
    Khan, Irfan Ullah
    Aslam, Nida
    Anwar, Talha
    Alsaif, Hind S.
    Chrouf, Sara Mhd. Bachar
    Alzahrani, Norah A.
    Alamoudi, Fatimah Ahmed
    Kamaleldin, Mariam Moataz Aly
    Awary, Khaled Bassam
    SENSORS, 2022, 22 (02)
  • [34] Chest X-Ray Findings in Patients With COVID-19 Pneumonia
    Baker, Caron
    Ramponi, Denise R.
    ADVANCED EMERGENCY NURSING JOURNAL, 2022, 44 (03) : 206 - 212
  • [35] Fast COVID-19 and Pneumonia Classification Using Chest X-ray Images
    Lujan-Garcia, Juan Eduardo
    Moreno-Ibarra, Marco Antonio
    Villuendas-Rey, Yenny
    Yanez-Marquez, Cornelio
    MATHEMATICS, 2020, 8 (09)
  • [36] Artificial Intelligence Applied to Chest X-ray for Differential Diagnosis of COVID-19 Pneumonia
    Salvatore, Christian
    Interlenghi, Matteo
    Monti, Caterina B.
    Ippolito, Davide
    Capra, Davide
    Cozzi, Andrea
    Schiaffino, Simone
    Polidori, Annalisa
    Gandola, Davide
    Ali, Marco
    Castiglioni, Isabella
    Messa, Cristina
    Sardanelli, Francesco
    DIAGNOSTICS, 2021, 11 (03)
  • [37] COVID-19 and pneumonia diagnosis from chest X-ray images using convolutional neural networks
    Hariri, Muhab
    Avsar, Ercan
    NETWORK MODELING AND ANALYSIS IN HEALTH INFORMATICS AND BIOINFORMATICS, 2023, 12 (01):
  • [38] COVID-19 and pneumonia diagnosis from chest X-ray images using convolutional neural networks
    Muhab Hariri
    Ercan Avşar
    Network Modeling Analysis in Health Informatics and Bioinformatics, 12
  • [39] Deep Learning Transfer with AlexNet for chest X-ray COVID-19 recognition
    Cortes, E.
    Sanchez, S.
    IEEE LATIN AMERICA TRANSACTIONS, 2021, 19 (06) : 944 - 951
  • [40] Classification of Chest X-ray Images to Diagnose Covid-19 using Deep Learning Techniques
    Santos Silva, Isabel Heloise
    Barros Negreiros, Ramoni Reus
    Firmino Alves, Andre Luiz
    Gomes Valadares, Dalton Cezane
    Perkusich, Angelo
    WINSYS : PROCEEDINGS OF THE 19TH INTERNATIONAL CONFERENCE ON WIRELESS NETWORKS AND MOBILE SYSTEMS, 2022, : 93 - 100