Competitive and cooperative particle swarm optimization with information sharing mechanism for global optimization problems

被引:148
|
作者
Li, Yuhua [1 ,2 ]
Zhan, Zhi-Hui [2 ,3 ]
Lin, Shujin [4 ]
Zhang, Jun [3 ]
Luo, Xiaonan [1 ,2 ]
机构
[1] Natl Engn Res Ctr Digital Life, Guangzhou 510006, Guangdong, Peoples R China
[2] Sun Yat Sen Univ, Sch Informat Sci & Technol, Guangzhou 510006, Guangdong, Peoples R China
[3] Sun Yat Sen Univ, Dept Comp Sci, Guangzhou 510006, Guangdong, Peoples R China
[4] Sun Yat Sen Univ, Sch Commun & Design, Guangzhou 510006, Guangdong, Peoples R China
基金
中国国家自然科学基金;
关键词
Particle swarm optimization (PSO); Competition; Cooperation; Information sharing; Global optimization problems; HARMONY SEARCH ALGORITHM; EVOLUTIONARY; DIVERSITY; OPTIMA; MODEL;
D O I
10.1016/j.ins.2014.09.030
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
This paper proposes an information sharing mechanism (ISM) to improve the performance of particle swarm optimization (PSO). The ISM allows each particle to share its best search information, so that all the other particles can take advantage of the shared information by communicating with it. In this way, the particles could enhance the mutual interaction with the others sufficiently and heighten their search ability greatly by using the search information of the whole swarm. Also, a competitive and cooperative (CC) operator is designed for a particle to utilize the shared information in a proper and efficient way. As the ISM share the search information among all the particles, it is an appropriate way to mix up information of the whole swarm for a better exploration of the landscape. Therefore, the competitive and cooperative PSO with ISM (CCPSO-ISM) is capable to prevent the premature convergence when solving global optimization problems. The satisfactory performance of CCPSO-ISM is evaluated by comparing it with other variants of PSOs on a set of 16 global optimization functions. Moreover, the effectiveness and efficiency of CCPSO-ISM is validated under different test environments such as biased initialization, coordinate rotated and high dimensionality. (C) 2014 Elsevier Inc. All rights reserved.
引用
收藏
页码:370 / 382
页数:13
相关论文
共 50 条
  • [21] Particle swarm optimization and fitness sharing to solve multi-objective optimization problems
    Salazar-Lechuga, M
    Rowe, JE
    2005 IEEE CONGRESS ON EVOLUTIONARY COMPUTATION, VOLS 1-3, PROCEEDINGS, 2005, : 1204 - 1211
  • [22] Simplex particle swarm optimization with arithmetical crossover for solving global optimization problems
    Tawhid, Mohamed A.
    Ali, Ahmed F.
    OPSEARCH, 2016, 53 (04) : 705 - 740
  • [23] Chaotic catfish particle swarm optimization for solving global numerical optimization problems
    Chuang, Li-Yeh
    Tsai, Sheng-Wei
    Yang, Cheng-Hong
    APPLIED MATHEMATICS AND COMPUTATION, 2011, 217 (16) : 6900 - 6916
  • [24] Metropolis Particle Swarm Optimization Algorithm with Mutation Operator For Global Optimization Problems
    Idoumghar, L.
    Aouad, M. Idrissi
    Melkemi, M.
    Schott, R.
    22ND INTERNATIONAL CONFERENCE ON TOOLS WITH ARTIFICIAL INTELLIGENCE (ICTAI 2010), PROCEEDINGS, VOL 1, 2010,
  • [25] Particle Swarm Optimization with New Initializing Technique to Solve Global Optimization Problems
    Ashraf, Adnan
    Almazroi, Abdulwahab Ali
    Bangyal, Waqas Haider
    Alqarni, Mohammed A.
    INTELLIGENT AUTOMATION AND SOFT COMPUTING, 2022, 31 (01): : 191 - 206
  • [26] Particle Multi-Swarm Optimization: A Proposal of Multiple Particle Swarm Optimizers with Information Sharing
    Sho, Hiroshi
    2017 IEEE 10TH INTERNATIONAL WORKSHOP ON COMPUTATIONAL INTELLIGENCE AND APPLICATIONS (IWCIA), 2017, : 109 - 114
  • [27] Exponential Particle Swarm Optimization for Global Optimization
    Kassoul, Khelil
    Zufferey, Nicolas
    Cheikhrouhou, Naoufel
    Belhaouari, Samir Brahim
    IEEE ACCESS, 2022, 10 : 78320 - 78344
  • [28] Neighborhood Sharing Particle Swarm Optimization
    Chu, Yongfang
    Cui, Zhihua
    PROCEEDINGS OF THE 8TH IEEE INTERNATIONAL CONFERENCE ON COGNITIVE INFORMATICS, 2009, : 521 - 526
  • [29] On the improvements of particle swarm optimization for global optimization
    Yang, Chunxia
    Wang, Nuo
    ICIC Express Letters, 2011, 5 (03): : 809 - 815
  • [30] A modified particle swarm optimization for global optimization
    Yang C.-H.
    Tsai S.-W.
    Chuang L.-Y.
    Yang C.-H.
    International Journal of Advancements in Computing Technology, 2011, 3 (07) : 169 - 189