Universality and decidability of number-conserving cellular automata

被引:34
|
作者
Moreira, A
机构
[1] Univ Chile, Ctr Modelamiento Matemat, Santiago, Chile
[2] Univ Chile, Fac Ciencias Fis & Matemat, Dept Ingn, Santiago, Chile
关键词
cellular automata; number-conserving systems; universality;
D O I
10.1016/S0304-3975(02)00065-8
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
Number-conserving cellular automata (NCCA) are particularly interesting, both because of their natural appearance as models of real systems, and because of the strong restrictions that number-conservation implies. Here we extend the definition of the property to include cellular automata with any set of states in Z, and show that they can be always extended to "usual" NCCA with contiguous states. We show a way to simulate any one dimensional CA through a one-dimensional NCCA, proving the existence of intrinsically universal NCCA. Finally, we give an algorithm to decide, given a CA, if its states can be labeled with integers to produce a NCCA, and to find this relabeling if the answer is positive. (C) 2002 Elsevier Science B.V. All rights reserved.
引用
收藏
页码:711 / 721
页数:11
相关论文
共 50 条
  • [41] A two-layer representation of four-state reversible number-conserving 2D cellular automata
    Dzedzej, Adam
    Wolnik, Barbara
    Dziemianczuk, Maciej
    Nenca, Anna
    Baetens, Jan M.
    De Baets, Bernard
    JOURNAL OF STATISTICAL MECHANICS-THEORY AND EXPERIMENT, 2019,
  • [42] INVERSION OF NUMBER-CONSERVING GAP EQUATIONS
    JENKINS, CA
    GREENBERG, NI
    BULLETIN OF THE AMERICAN PHYSICAL SOCIETY, 1979, 24 (01): : 22 - 22
  • [43] Anisotropic hydrodynamics with number-conserving kernels
    Almaalol, Dekrayat
    Alqahtani, Mubarak
    Strickland, Michael
    PHYSICAL REVIEW C, 2019, 99 (01)
  • [44] NUMBER-CONSERVING APPROXIMATION TO SHELL MODEL
    GAMBHIR, YK
    RIMINI, A
    WEBER, T
    PHYSICAL REVIEW, 1969, 188 (04): : 1573 - +
  • [45] Cellular Automata, Decidability and Phasespace
    Sutner, K.
    FUNDAMENTA INFORMATICAE, 2010, 104 (1-2) : 141 - 160
  • [46] Bohr chaoticity of number-conserving shifts
    Chang, Chih-Hung
    Liang, Yu-Hao
    CHAOS SOLITONS & FRACTALS, 2024, 187
  • [47] NUMBER-CONSERVING TREATMENT OF PAIRING INTERACTION
    DANG, GD
    PHYSICAL REVIEW LETTERS, 1968, 21 (13) : 917 - &
  • [48] Number-conserving model for boson pairing
    Fantoni, S
    Nguyen, TM
    Shenoy, SR
    Sarsa, A
    PHYSICAL REVIEW A, 2002, 66 (03): : 336041 - 3360417
  • [50] On the Non-existance of Rotation-Symmetric von Neumann Neighbor Number-Conserving Cellular Automata of Which the State Number is Less than Four
    Tanimoto, Naonori
    Imai, Katsunobu
    Iwamoto, Chuzo
    Morita, Kenichi
    IEICE TRANSACTIONS ON INFORMATION AND SYSTEMS, 2009, E92D (02) : 255 - 257