Universality and decidability of number-conserving cellular automata

被引:34
|
作者
Moreira, A
机构
[1] Univ Chile, Ctr Modelamiento Matemat, Santiago, Chile
[2] Univ Chile, Fac Ciencias Fis & Matemat, Dept Ingn, Santiago, Chile
关键词
cellular automata; number-conserving systems; universality;
D O I
10.1016/S0304-3975(02)00065-8
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
Number-conserving cellular automata (NCCA) are particularly interesting, both because of their natural appearance as models of real systems, and because of the strong restrictions that number-conservation implies. Here we extend the definition of the property to include cellular automata with any set of states in Z, and show that they can be always extended to "usual" NCCA with contiguous states. We show a way to simulate any one dimensional CA through a one-dimensional NCCA, proving the existence of intrinsically universal NCCA. Finally, we give an algorithm to decide, given a CA, if its states can be labeled with integers to produce a NCCA, and to find this relabeling if the answer is positive. (C) 2002 Elsevier Science B.V. All rights reserved.
引用
收藏
页码:711 / 721
页数:11
相关论文
共 50 条
  • [1] Number-conserving cellular automata I:: decidability
    Durand, B
    Formenti, E
    Róka, Z
    THEORETICAL COMPUTER SCIENCE, 2003, 299 (1-3) : 523 - 535
  • [2] On Universality of Radius 1/2 Number-Conserving Cellular Automata
    Imai, Katsunobu
    Alhazov, Artiom
    UNCONVENTIONAL COMPUTATION, PROCEEDINGS, 2010, 6079 : 45 - 55
  • [3] Number-conserving reversible cellular automata and their computation-universality
    Morita, K
    Imai, K
    RAIRO-INFORMATIQUE THEORIQUE ET APPLICATIONS-THEORETICAL INFORMATICS AND APPLICATIONS, 2001, 35 (03): : 239 - 258
  • [4] Universality of One-Dimensional Reversible and Number-Conserving Cellular Automata
    Morita, Kenichi
    ELECTRONIC PROCEEDINGS IN THEORETICAL COMPUTER SCIENCE, 2012, (90): : 142 - 150
  • [5] Eventually number-conserving cellular automata
    Boccara, Nino
    INTERNATIONAL JOURNAL OF MODERN PHYSICS C, 2007, 18 (01): : 35 - 42
  • [6] Ternary reversible number-conserving cellular automata are trivial
    Wolnik, Barbara
    De Baets, Bernard
    INFORMATION SCIENCES, 2020, 513 : 180 - 189
  • [7] Communication complexity in number-conserving and monotone cellular automata
    Goles, E.
    Moreira, A.
    Rapaport, I.
    THEORETICAL COMPUTER SCIENCE, 2011, 412 (29) : 3616 - 3628
  • [8] Solutions for certain number-conserving deterministic cellular automata
    Kujala, JV
    Lukka, TJ
    PHYSICAL REVIEW E, 2002, 65 (02):
  • [9] Fluctuation-driven computing on number-conserving cellular automata
    Lee, Jia
    Imai, Katsunobu
    Zhu, Qing-sheng
    INFORMATION SCIENCES, 2012, 187 : 266 - 276
  • [10] Firing squad synchronization problem in number-conserving cellular automata
    Imai, K
    Morita, K
    Sako, K
    FUNDAMENTA INFORMATICAE, 2002, 52 (1-3) : 133 - 141