Using CRISPR to understand and manipulate gene regulation

被引:11
|
作者
Akinci, Ersin [1 ,2 ,3 ]
Hamilton, Marisa C. [1 ,2 ]
Khowpinitchai, Benyapa [1 ,2 ]
Sherwood, Richard, I [1 ,2 ,4 ]
机构
[1] Brigham & Womens Hosp, Div Genet, Dept Med, Boston, MA 02115 USA
[2] Harvard Med Sch, Boston, MA 02115 USA
[3] Akdeniz Univ, Fac Agr, Dept Agr Biotechnol, TR-07070 Antalya, Turkey
[4] Hubrecht Inst, NL-3584 CT Utrecht, Netherlands
来源
DEVELOPMENT | 2021年 / 148卷 / 09期
基金
美国国家卫生研究院;
关键词
CRISPR screening; CRISPR-Cas9; Disease modeling; Epigenetics; Gene regulation; PLURIPOTENT STEM-CELLS; TRANSCRIPTION FACTORS; COMPUTATIONAL FRAMEWORK; CELLULAR IDENTITY; CAS9; NUCLEASES; GENOMIC DNA; BETA-CELL; ENHANCER; CHROMATIN; IDENTIFICATION;
D O I
10.1242/dev.182667
中图分类号
Q [生物科学];
学科分类号
07 ; 0710 ; 09 ;
摘要
Understanding how genes are expressed in the correct cell types and at the correct level is a key goal of developmental biology research. Gene regulation has traditionally been approached largely through observational methods, whereas perturbational approaches have lacked precision. CRISPR-Cas9 has begun to transform the study of gene regulation, allowing for precise manipulation of genomic sequences, epigenetic functionalization and gene expression. CRISPR-Cas9 technology has already led to the discovery of new paradigms in gene regulation and, as new CRISPR-based tools and methods continue to be developed, promises to transform our knowledge of the gene regulatory code and our ability to manipulate cell fate. Here, we discuss the current and future application of the emerging CRISPR toolbox toward predicting gene regulatory network behavior, improving stem cell disease modeling, dissecting the epigenetic code, reprogramming cell fate and treating diseases of gene dysregulation.
引用
收藏
页数:16
相关论文
共 50 条
  • [31] Enhanced Cas12a multi-gene regulation using a CRISPR array separator
    Magnusson, Jens P.
    Rios, Antonio Ray
    Wu, Lingling
    Qi, Lei S.
    ELIFE, 2021, 10
  • [32] Exploiting CRISPR-Cas to manipulate Enterococcus faecalis populations
    Hullahalli, Karthik
    Rodrigues, Marinelle
    Palmer, Kelli L.
    ELIFE, 2017, 6
  • [33] Chemical strategies to understand and manipulate host-pathogen interactions
    Wagner, Bridget K.
    Dey, Mishtu
    CELL CHEMICAL BIOLOGY, 2022, 29 (05) : 711 - 712
  • [34] Intracellular biosensor-based dynamic regulation to manipulate gene expression at the spatiotemporal level
    Zhou, Shenghu
    Alper, Hal S.
    Zhou, Jingwen
    Deng, Yu
    CRITICAL REVIEWS IN BIOTECHNOLOGY, 2023, 43 (04) : 646 - 663
  • [35] Computing and Applying Atomic Regulons to Understand Gene Expression and Regulation
    Faria, Jose P.
    Davis, James J.
    Edirisinghe, Janaka N.
    Taylor, Ronald C.
    Weisenhorn, Pamela
    Olson, Robert D.
    Stevens, Rick L.
    Rocha, Miguel
    Rocha, Isabel
    Best, Aaron A.
    DeJongh, Matthew
    Tintle, Nathan L.
    Parrello, Bruce
    Overbeek, Ross
    Henry, Christopher S.
    FRONTIERS IN MICROBIOLOGY, 2016, 7
  • [36] Gene-edited CRISPR mushroom escapes US regulation
    Emily Waltz
    Nature, 2016, 532 : 293 - 293
  • [37] Gene-edited CRISPR mushroom escapes US regulation
    Waltz, Emily
    NATURE, 2016, 532 (7599) : 293 - 293
  • [38] CRISPR-Cas12a System for Biosensing and Gene Regulation
    Shi, Yuyan
    Fu, Xiaoyi
    Yin, Yao
    Peng, Fangqi
    Yin, Xia
    Ke, Guoliang
    Zhang, Xiaobing
    CHEMISTRY-AN ASIAN JOURNAL, 2021, 16 (08) : 857 - 867
  • [39] Using Cryoem to Understand How Phages Evade Bacterial CRISPR Defense System
    Chowdhury, Saikat
    Rollins, MaryClare F.
    Carter, Joshua
    Jackson, Ryan
    Nosaka, Lyn'Al
    Wiedenheft, Blake
    Lander, Gabriel C.
    BIOPHYSICAL JOURNAL, 2017, 112 (03) : 334A - 335A
  • [40] Gene editing and expression in hard-to-manipulate primary tumour cells by CRISPR/Cas9 and mRNA technology
    Nardi, F.
    Di Rita, A.
    Pezzella, L.
    Ciofini, S.
    Gozzetti, A.
    Bocchia, M.
    Kabanova, A.
    FEBS OPEN BIO, 2021, 11 : 411 - 411