Several observations indicate that 5-HTIA receptors found on a long neuronal feedback loop, originating from the medial prefrontal cortex, regulate 5-HT neuronal firing. In the present study, the muscarinic (M) receptor antagonists atropine and scopolamine as well as the M2 receptor antagonist AF-DX 116, but not the preferential MI receptor antagonist pirenzepine, reduced the suppressant effect of the 5-HTIA receptor agonist 8-OH-DPAT on the spontaneous firing activity of rat dorsal raphe 5-HT neurons. Moreover, AF-64A-induced lesions of cholinergic neurons directly in the medial prefrontal cortex and after its i.c.v. injection attenuated the effect of 8-OH-DPAT. Finally, the NMDA receptor antagonist (+)MK-801 and the GABA(B) receptor antagonist SCH-50911, but not the GABA(A) receptor antagonist (-)bicuculline, dampened the latter response. The present study unveiled a key role for the cholinergic and GABAergic systems in the feedback inhibition of dorsal raphe 5-HT neurons. NeuroReport 11:3397-3401 (C) 2000 Lippincott Williams & Wilkins.