THREE-VARIABLE SYMMETRIC AND ANTISYMMETRIC EXPONENTIAL FUNCTIONS AND ORTHOGONAL POLYNOMIALS

被引:1
|
作者
Bezubik, Agata [1 ]
Hrivnak, Jiri [2 ]
Patera, Jiri [3 ,4 ]
Posta, Severin [5 ]
机构
[1] Univ Bialystok, Inst Math, Akad 2, PL-15267 Bialystok, Poland
[2] Czech Tech Univ, Fac Nucl Sci & Phys Engn, Dept Phys, Brehova 7, Prague 11519, Czech Republic
[3] Univ Montreal, Ctr Rech Math, CP 6128 Ctr Ville, Montreal H3C 3J7, PQ, Canada
[4] MIND Res Inst, Irvine, CA 92617 USA
[5] Czech Tech Univ, Fac Nucl Sci & Phys Engn, Dept Math, Trojanova 13, Prague 12000, Czech Republic
基金
加拿大自然科学与工程研究理事会;
关键词
exponential functions; orthogonal polynomials; DISCRETE;
D O I
10.1515/ms-2016-0280
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
The common exponential functions whose exponents are the scalar products (lambda, x), where x is a real variable and A is an integer, admit two generalizations to any higher dimension, the symmetric and the antisymmetric ones [KLIMYK, A. PATERA, J.: (Anti)symmetric multivariate exponential functions and corresponding Fourier transforms, J. Phys. A: Math. Theor. 40 (2007), 10473-10489]. Restriction in the paper to the three variables only allows us to work out many specific properties of the symmetric and antisymmetric functions useful in applications. Such are (i) the orthogonalities, both the continuous one and the discrete one on the 3D lattice of any density; (ii) corresponding discrete and continuous Fourier transforms; (iii) generating functions for the related polynomials in three variables, and others. Rapidly increasing precision of the interpolation with increasing density of the 3D lattice is shown in an example. (C) 2017 Mathematical Institute Slovak Academy of Sciences
引用
下载
收藏
页码:427 / 446
页数:20
相关论文
共 50 条
  • [21] Symmetric Functions of Binary Products of Fibonacci and Orthogonal Polynomials
    Boussayoud, Ali
    Kerada, Mohamed
    Araci, Serkan
    Acikgoz, Mehmet
    Esi, Ayhan
    FILOMAT, 2019, 33 (06) : 1495 - 1504
  • [22] Some inequalities for symmetric functions and an application to orthogonal polynomials
    Milovanovic, GV
    Cvetkovic, AS
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2005, 311 (01) : 191 - 208
  • [23] A Three-Variable Inequality
    Bataille, Michel
    AMERICAN MATHEMATICAL MONTHLY, 2013, 120 (02): : 177 - 177
  • [24] THREE-VARIABLE ALTERNATING TRIGONOMETRIC FUNCTIONS AND CORRESPONDING FOURIER TRANSFORMS
    Bezubik, Agata
    Posta, Severin
    ACTA POLYTECHNICA, 2016, 56 (03) : 156 - 165
  • [25] Exponential Orthogonal Polynomials
    Gustafsson, Bjorn
    Putinar, Mihai
    HYPONORMAL QUANTIZATION OF PLANAR DOMAINS: EXPONENTIAL TRANSFORM IN DIMENSION TWO, 2017, 2199 : 47 - 56
  • [26] Orthogonal Stability and Solution of a Three-Variable Functional Equation in Extended Banach Spaces
    Jakhar, Jagjeet
    Sharma, Shalu
    Jakhar, Jyotsana
    Yousif, Majeed A.
    Mohammed, Pshtiwan Othman
    Lupas, Alina Alb
    Chorfi, Nejmeddine
    MATHEMATICS, 2024, 12 (18)
  • [27] Three-variable equations of posets
    Jezek, J
    CZECHOSLOVAK MATHEMATICAL JOURNAL, 2002, 52 (04) : 811 - 816
  • [28] FUNCTIONS ORTHOGONAL TO POLYNOMIALS AND THEIR APPLICATION IN AXIALLY SYMMETRIC PROBLEMS IN PHYSICS
    Savchenko, A. O.
    THEORETICAL AND MATHEMATICAL PHYSICS, 2014, 179 (02) : 574 - 587
  • [29] Functions orthogonal to polynomials and their application in axially symmetric problems in physics
    A. O. Savchenko
    Theoretical and Mathematical Physics, 2014, 179 : 574 - 587
  • [30] Three-Variable Equations of Posets
    J. Ježek
    Czechoslovak Mathematical Journal, 2002, 52 : 811 - 816