THREE-VARIABLE SYMMETRIC AND ANTISYMMETRIC EXPONENTIAL FUNCTIONS AND ORTHOGONAL POLYNOMIALS

被引:1
|
作者
Bezubik, Agata [1 ]
Hrivnak, Jiri [2 ]
Patera, Jiri [3 ,4 ]
Posta, Severin [5 ]
机构
[1] Univ Bialystok, Inst Math, Akad 2, PL-15267 Bialystok, Poland
[2] Czech Tech Univ, Fac Nucl Sci & Phys Engn, Dept Phys, Brehova 7, Prague 11519, Czech Republic
[3] Univ Montreal, Ctr Rech Math, CP 6128 Ctr Ville, Montreal H3C 3J7, PQ, Canada
[4] MIND Res Inst, Irvine, CA 92617 USA
[5] Czech Tech Univ, Fac Nucl Sci & Phys Engn, Dept Math, Trojanova 13, Prague 12000, Czech Republic
基金
加拿大自然科学与工程研究理事会;
关键词
exponential functions; orthogonal polynomials; DISCRETE;
D O I
10.1515/ms-2016-0280
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
The common exponential functions whose exponents are the scalar products (lambda, x), where x is a real variable and A is an integer, admit two generalizations to any higher dimension, the symmetric and the antisymmetric ones [KLIMYK, A. PATERA, J.: (Anti)symmetric multivariate exponential functions and corresponding Fourier transforms, J. Phys. A: Math. Theor. 40 (2007), 10473-10489]. Restriction in the paper to the three variables only allows us to work out many specific properties of the symmetric and antisymmetric functions useful in applications. Such are (i) the orthogonalities, both the continuous one and the discrete one on the 3D lattice of any density; (ii) corresponding discrete and continuous Fourier transforms; (iii) generating functions for the related polynomials in three variables, and others. Rapidly increasing precision of the interpolation with increasing density of the 3D lattice is shown in an example. (C) 2017 Mathematical Institute Slovak Academy of Sciences
引用
收藏
页码:427 / 446
页数:20
相关论文
共 50 条
  • [1] Two dimensional symmetric and antisymmetric exponential functions and orthogonal polynomials
    Bezubik, Agata
    Hrivnak, Jiri
    Posta, Severin
    [J]. XXTH INTERNATIONAL CONFERENCE ON INTEGRABLE SYSTEMS AND QUANTUM SYMMETRIES (ISQS-20), 2013, 411
  • [2] Three-variable exponential functions of the alternating group
    Hrivnak, Jiri
    Patera, Jiri
    Posta, Severin
    [J]. JOURNAL OF PHYSICS A-MATHEMATICAL AND THEORETICAL, 2012, 45 (04)
  • [3] A new class of three-variable orthogonal polynomials and their recurrences relations
    JiaChang Sun
    [J]. Science in China Series A: Mathematics, 2008, 51 : 1071 - 1092
  • [4] A new class of three-variable orthogonal polynomials and their recurrences relations
    SUN JiaChang State Key Laboratory of Computer Science
    [J]. Science China Mathematics, 2008, (06) : 1071 - 1092
  • [5] A new class of three-variable orthogonal polynomials and their recurrences relations
    Sun JiaChang
    [J]. SCIENCE IN CHINA SERIES A-MATHEMATICS, 2008, 51 (06): : 1071 - 1092
  • [6] New families of generating functions for certain class of three-variable polynomials
    Kaanoglu, Cem
    Ozarslan, Mehmet Ali
    [J]. APPLIED MATHEMATICS AND COMPUTATION, 2011, 218 (03) : 836 - 842
  • [7] Some families of generating functions for a certain class of three-variable polynomials
    Srivastava, H. M.
    Ozarslan, M. A.
    Kaanoglu, C.
    [J]. INTEGRAL TRANSFORMS AND SPECIAL FUNCTIONS, 2010, 21 (12) : 885 - 896
  • [8] Airy polynomials, three-variable Hermite polynomials and the paraxial wave equation
    Torre, A.
    [J]. JOURNAL OF OPTICS, 2012, 14 (04)
  • [9] Classical symmetric orthogonal polynomials of a discrete variable
    Area, I
    Godoy, E
    Ronveaux, A
    Zarzo, A
    [J]. INTEGRAL TRANSFORMS AND SPECIAL FUNCTIONS, 2004, 15 (01) : 1 - 12
  • [10] Moments of orthogonal polynomials and exponential generating functions
    Gessel, Ira M.
    Zeng, Jiang
    [J]. RAMANUJAN JOURNAL, 2023, 61 (02): : 675 - 700