New lower bounds for covering codes

被引:5
|
作者
Habsieger, L
Plagne, A
机构
[1] Univ Bordeaux 1, CNRS UMR 9936, Lab Algorithm Arithmet Expt, F-33405 Talence, France
[2] Ecole Polytech, LIX, F-91128 Palaiseau, France
关键词
covering code; linear inequality; lower bound;
D O I
10.1016/S0012-365X(00)00011-X
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We develop two methods for obtaining new lower bounds for the cardinality of covering codes. Both are based on the notion of linear inequality of a code. Indeed, every linear inequality of a code (defined on F-q(n)) allows to obtain, using a classical formula (inequality (2) below), a lower bound on K-q(n, R), the minimum cardinality of a covering code with radius R. We first show how to get new linear inequalities (providing new lower bounds) from old ones. Then, we prove some formulae that improve on the classical formula (2) for linear inequalities of some given types. Applying both methods to all the classical cases of the literature, we improve on nearly 20% of the best lower bounds on K-q(n, R). (C) 2000 Elsevier Science B.V. All rights reserved.
引用
收藏
页码:125 / 149
页数:25
相关论文
共 50 条
  • [21] Lower Bounds for q-ary Codes with Large Covering Radius
    Haas, Wolfgang
    Halupczok, Immanuel
    Schlage-Puchta, Jan-Christoph
    ELECTRONIC JOURNAL OF COMBINATORICS, 2009, 16 (01):
  • [22] Lower bounds for q-ary codes of covering radius one
    Haas, W
    DISCRETE MATHEMATICS, 2000, 219 (1-3) : 97 - 106
  • [23] MODIFIED BOUNDS FOR COVERING CODES
    HONKALA, IS
    IEEE TRANSACTIONS ON INFORMATION THEORY, 1991, 37 (02) : 351 - 365
  • [24] New bounds for linear codes of covering radii 2 and 3
    Bartoli, Daniele
    Davydov, Alexander A.
    Giulietti, Massimo
    Marcugini, Stefano
    Pambianco, Fernanda
    CRYPTOGRAPHY AND COMMUNICATIONS-DISCRETE-STRUCTURES BOOLEAN FUNCTIONS AND SEQUENCES, 2019, 11 (05): : 903 - 920
  • [25] New bounds for linear codes of covering radii 2 and 3
    Daniele Bartoli
    Alexander A. Davydov
    Massimo Giulietti
    Stefano Marcugini
    Fernanda Pambianco
    Cryptography and Communications, 2019, 11 : 903 - 920
  • [26] Ordered covering arrays and upper bounds on covering codes
    Castoldi, Andre Guerino
    Carmelo, Emerson Monte L.
    Moura, Lucia
    Panario, Daniel
    Stevens, Brett
    JOURNAL OF COMBINATORIAL DESIGNS, 2023, 31 (06) : 304 - 329
  • [27] NEW LOWER BOUNDS FOR CONSTANT WEIGHT CODES
    VANPUL, CLM
    ETZION, T
    IEEE TRANSACTIONS ON INFORMATION THEORY, 1989, 35 (06) : 1324 - 1329
  • [28] New Lower Bounds for Constant Dimension Codes
    Silberstein, Natalia
    Trautmann, Anna-Lena
    2013 IEEE INTERNATIONAL SYMPOSIUM ON INFORMATION THEORY PROCEEDINGS (ISIT), 2013, : 514 - +
  • [29] NEW LOWER BOUNDS FOR ASYMMETRIC AND UNIDIRECTIONAL CODES
    ETZION, T
    IEEE TRANSACTIONS ON INFORMATION THEORY, 1991, 37 (06) : 1696 - 1705
  • [30] New lower and upper bounds on Armstrong codes
    Alexandrova, Todorka
    Boyvalenkov, Peter
    Sali, Attila
    PROCEEDINGS OF THE 2020 SEVENTEENTH INTERNATIONAL WORKSHOP ON ALGEBRAIC AND COMBINATORIAL CODING THEORY ALGEBRAIC AND COMBINATORIAL CODING THEORY (ACCT 2020): PROCEEDINGS OF THE SEVENTEENTH INTERNATIONAL WORKSHOP ON ALGEBRAIC AND COMBINATORIAL CODING THEORY ACCT 2020, 2020, : 1 - 5