Multi-Label Classification by Semi-Supervised Singular Value Decomposition

被引:24
|
作者
Jing, Liping [1 ]
Shen, Chenyang [2 ]
Yang, Liu [3 ]
Yu, Jian [1 ]
Ng, Michael K. [2 ]
机构
[1] Beijing Jiaotong Univ, Sch Comp & Informat Technol, Beijing 100044, Peoples R China
[2] Hong Kong Baptist Univ, Dept Math, Ctr Math Imaging & Vis, Hong Kong, Hong Kong, Peoples R China
[3] Tianjin Univ, Sch Comp Sci & Technol, Tianjin 300072, Peoples R China
关键词
Image classification; singular value decomposition; multi-label; nuclear norm regularization; manifold regularization; MINIMIZATION;
D O I
10.1109/TIP.2017.2719939
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Multi-label problems arise in various domains, including automatic multimedia data categorization, and have generated significant interest in computer vision and machine learning community. However, existing methods do not adequately address two key challenges: exploiting correlations between labels and making up for the lack of labelled data or even missing labelled data. In this paper, we proposed to use a semi-supervised singular value decomposition (SVD) to handle these two challenges. The proposed model takes advantage of the nuclear norm regularization on the SVD to effectively capture the label correlations. Meanwhile, it introduces manifold regularization on mapping to capture the intrinsic structure among data, which provides a good way to reduce the required labelled data with improving the classification performance. Furthermore, we designed an efficient algorithm to solve the proposed model based on the alternating direction method of multipliers, and thus, it can efficiently deal with large-scale data sets. Experimental results for synthetic and real-world multimedia data sets demonstrate that the proposed method can exploit the label correlations and obtain promising and better label prediction results than the state-of-the-art methods.
引用
收藏
页码:4612 / 4625
页数:14
相关论文
共 50 条
  • [1] Robust Multi-Label Semi-Supervised Classification
    Li, Sheng
    Fu, Yun
    2017 IEEE INTERNATIONAL CONFERENCE ON BIG DATA (BIG DATA), 2017, : 27 - 36
  • [2] Semi-supervised imbalanced multi-label classification with label propagation
    Du, Guodong
    Zhang, Jia
    Zhang, Ning
    Wu, Hanrui
    Wu, Peiliang
    Li, Shaozi
    PATTERN RECOGNITION, 2024, 150
  • [3] Semi-Supervised Dimension Reduction for Multi-label Classification
    Qian, Buyue
    Davidson, Ian
    PROCEEDINGS OF THE TWENTY-FOURTH AAAI CONFERENCE ON ARTIFICIAL INTELLIGENCE (AAAI-10), 2010, : 569 - 574
  • [4] A survey of multi-label classification based on supervised and semi-supervised learning
    Han, Meng
    Wu, Hongxin
    Chen, Zhiqiang
    Li, Muhang
    Zhang, Xilong
    INTERNATIONAL JOURNAL OF MACHINE LEARNING AND CYBERNETICS, 2023, 14 (03) : 697 - 724
  • [5] A survey of multi-label classification based on supervised and semi-supervised learning
    Meng Han
    Hongxin Wu
    Zhiqiang Chen
    Muhang Li
    Xilong Zhang
    International Journal of Machine Learning and Cybernetics, 2023, 14 : 697 - 724
  • [6] Semi-supervised multi-label classification using incomplete label information
    Tan, Qiaoyu
    Yu, Yanming
    Yu, Guoxian
    Wang, Jun
    NEUROCOMPUTING, 2017, 260 : 192 - 202
  • [7] Using Semi-Supervised Learning in Multi-label Classification Problems
    Santos, Araken M.
    Canuto, Anne M. P.
    2012 INTERNATIONAL JOINT CONFERENCE ON NEURAL NETWORKS (IJCNN), 2012,
  • [8] Distributed Semi-supervised Multi-label Classification with Quantized Communication
    Xu, Zhen
    Zhai, Yifan
    Liu, Ying
    ICMLC 2020: 2020 12TH INTERNATIONAL CONFERENCE ON MACHINE LEARNING AND COMPUTING, 2018, : 57 - 62
  • [9] Discrete Semi-supervised Multi-label Learning for Image Classification
    Xie, Liang
    He, Lang
    Shu, Haohao
    Hu, Shengyuan
    ADVANCES IN MULTIMEDIA INFORMATION PROCESSING, PT I, 2018, 11164 : 808 - 818
  • [10] Applying semi-supervised learning in hierarchical multi-label classification
    Santos, Araken
    Canuto, Anne
    EXPERT SYSTEMS WITH APPLICATIONS, 2014, 41 (14) : 6075 - 6085