A survey of multi-label classification based on supervised and semi-supervised learning

被引:24
|
作者
Han, Meng [1 ]
Wu, Hongxin [1 ]
Chen, Zhiqiang [1 ]
Li, Muhang [1 ]
Zhang, Xilong [1 ]
机构
[1] North Minzu Univ, Sch Comp Sci & Engn, Yinchuan, Ningxia, Peoples R China
关键词
Supervised learning; Semi-supervised learning; Image classification; Text classification; Evaluation metrics; FEATURE-SELECTION; BAYESIAN NETWORK; PROPAGATION; ALGORITHMS; RETRIEVAL; ELM; RBF;
D O I
10.1007/s13042-022-01658-9
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Multi-label classification algorithms based on supervised learning use all the labeled data to train classifiers. However, in real life, many of the data are unlabeled, and it is costly to label all the data needed. Multi-label classification algorithms based on semi-supervised learning can use both labeled and unlabeled data to train classifiers, resulting in better-performing models. In this paper, we first review supervised learning classification algorithms in terms of label non-correlation and label correlation and semi-supervised learning classification algorithms in terms of inductive methods and transductive methods. After that, multi-label classification algorithms are introduced from the application areas of image, text, music and video. Subsequently, evaluation metrics and datasets are briefly introduced. Finally, research directions in complex concept drift, label complex correlation, feature selection and class imbalance are presented.
引用
收藏
页码:697 / 724
页数:28
相关论文
共 50 条
  • [1] A survey of multi-label classification based on supervised and semi-supervised learning
    Meng Han
    Hongxin Wu
    Zhiqiang Chen
    Muhang Li
    Xilong Zhang
    [J]. International Journal of Machine Learning and Cybernetics, 2023, 14 : 697 - 724
  • [2] Using Semi-Supervised Learning in Multi-label Classification Problems
    Santos, Araken M.
    Canuto, Anne M. P.
    [J]. 2012 INTERNATIONAL JOINT CONFERENCE ON NEURAL NETWORKS (IJCNN), 2012,
  • [3] Robust Multi-Label Semi-Supervised Classification
    Li, Sheng
    Fu, Yun
    [J]. 2017 IEEE INTERNATIONAL CONFERENCE ON BIG DATA (BIG DATA), 2017, : 27 - 36
  • [4] Semi-supervised dual relation learning for multi-label classification
    Wang, Lichen
    Liu, Yunyu
    Di, Hang
    Qin, Can
    Sun, Gan
    Fu, Yun
    [J]. IEEE Transactions on Image Processing, 2021, 30 : 9125 - 9135
  • [5] Discrete Semi-supervised Multi-label Learning for Image Classification
    Xie, Liang
    He, Lang
    Shu, Haohao
    Hu, Shengyuan
    [J]. ADVANCES IN MULTIMEDIA INFORMATION PROCESSING, PT I, 2018, 11164 : 808 - 818
  • [6] Applying semi-supervised learning in hierarchical multi-label classification
    Santos, Araken
    Canuto, Anne
    [J]. EXPERT SYSTEMS WITH APPLICATIONS, 2014, 41 (14) : 6075 - 6085
  • [7] Multi-label learning vector quantization for semi-supervised classification
    Chen, Ning
    Ribeiro, Bernardete
    Tang, Chaosheng
    Chen, An
    [J]. INTELLIGENT DATA ANALYSIS, 2019, 23 (04) : 839 - 853
  • [8] Semi-Supervised Dual Relation Learning for Multi-Label Classification
    Wang, Lichen
    Liu, Yunyu
    Di, Hang
    Qin, Can
    Sun, Gan
    Fu, Yun
    [J]. IEEE TRANSACTIONS ON IMAGE PROCESSING, 2021, 30 : 9125 - 9135
  • [9] Semi-Supervised Partial Multi-Label Learning
    Xie, Ming-Kun
    Huang, Sheng-Jun
    [J]. 20TH IEEE INTERNATIONAL CONFERENCE ON DATA MINING (ICDM 2020), 2020, : 691 - 700
  • [10] Semi-supervised imbalanced multi-label classification with label propagation
    Du, Guodong
    Zhang, Jia
    Zhang, Ning
    Wu, Hanrui
    Wu, Peiliang
    Li, Shaozi
    [J]. PATTERN RECOGNITION, 2024, 150