Conformal data from finite entanglement scaling

被引:52
|
作者
Stojevic, Vid [1 ]
Haegeman, Jutho [1 ]
McCulloch, I. P. [2 ]
Tagliacozzo, Luca [3 ]
Verstraete, Frank [1 ,4 ]
机构
[1] Univ Ghent, Dept Phys & Astron, B-9000 Ghent, Belgium
[2] Univ Queensland, Sch Phys Sci, Brisbane, Qld 4072, Australia
[3] ICFO, Inst Photon Sci, E-08860 Castelldefels, Barcelona, Spain
[4] Univ Vienna, Vienna Ctr Quantum Sci, A-1090 Vienna, Austria
来源
PHYSICAL REVIEW B | 2015年 / 91卷 / 03期
关键词
INVARIANT THEORIES; OPERATOR CONTENT; STATES;
D O I
10.1103/PhysRevB.91.035120
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
In this paper, we apply the formalism of translation invariant (continuous) matrix product states in the thermodynamic limit to (1 + 1)-dimensional critical models. Finite bond dimension bounds the entanglement entropy and introduces an effective finite correlation length, so that the state is perturbed away from criticality. The assumption that the scaling hypothesis holds for this kind of perturbation is known in the literature as finite entanglement scaling. We provide further evidence for the validity of finite entanglement scaling and based on this formulate a scaling algorithm to estimate the central charge and critical exponents of the conformally invariant field theories describing the critical models under investigation. The algorithm is applied to three exemplary models; the cMPS version to the nonrelativistic Lieb-Liniger model and the relativistic massless boson, and MPS version to the one-dimensional quantum Ising model at the critical point. Another new aspect to our approach is that we directly use the (c) MPS induced correlation length rather than the bond dimension as scaling parameter. This choice is motivated by several theoretical arguments as well as by the remarkable accuracy of our results.
引用
收藏
页数:16
相关论文
共 50 条
  • [41] FINITE SIZE SCALING TECHNIQUE AND APPLICATIONS - ULYSSES DATA
    Popescu, Emil
    Popescu, Nedelia A.
    ROMANIAN ASTRONOMICAL JOURNAL, 2018, 28 (02): : 125 - 133
  • [42] Entanglement evolution across a conformal interface
    Wen, Xueda
    Wang, Yuxuan
    Ryu, Shinsei
    JOURNAL OF PHYSICS A-MATHEMATICAL AND THEORETICAL, 2018, 51 (19)
  • [43] Entanglement entropy and conformal field theory
    Calabrese, Pasquale
    Cardy, John
    JOURNAL OF PHYSICS A-MATHEMATICAL AND THEORETICAL, 2009, 42 (50)
  • [44] Entanglement entropy in conformal quantum mechanics
    Arzano M.
    D’Alise A.
    Frattulillo D.
    Journal of High Energy Physics, 2023 (10)
  • [45] Entanglement scaling in lattice systems
    Audenaert, K. M. R.
    Cramer, M.
    Eisert, J.
    Plenio, M. B.
    THIRD INTERNATIONAL WORKSHOP DICE2006 - QUANTUM MECHANICS BETWEEN DECOHERENCE AND DETERMINISM: NEW ASPECTS FROM PARTICLE PHYSICS TO COSMOLOGY, 2007, 67
  • [46] CANONICAL SCALING AND CONFORMAL INVARIANCE
    FERRARA, S
    PARISI, G
    GRILLO, AF
    GATTO, R
    PHYSICS LETTERS B, 1972, B 38 (05) : 333 - +
  • [47] CONFORMAL INVARIANCE AND BJORKEN SCALING
    ETIM, E
    PHYSICS LETTERS B, 1972, B 41 (02) : 169 - &
  • [48] INHOMOGENEOUS ISING CHAIN IN A TRANSVERSE FIELD - FINITE-SIZE SCALING AND ASYMPTOTIC CONFORMAL SPECTRUM
    BERCHE, B
    TURBAN, L
    JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 1990, 23 (13): : 3029 - 3041
  • [49] Conformal invariance, multifractality, and finite-size scaling at Anderson localization transitions in two dimensions
    Obuse, H.
    Subramaniam, A. R.
    Furusaki, A.
    Gruzberg, I. A.
    Ludwig, A. W. W.
    PHYSICAL REVIEW B, 2010, 82 (03)
  • [50] How to distill entanglement from a finite amount of qubits?
    Probst-Schendzielorz, Stefan
    Bschorr, Thorsten
    Freyberger, Matthias
    FORTSCHRITTE DER PHYSIK-PROGRESS OF PHYSICS, 2006, 54 (8-10): : 820 - 830