Conformal data from finite entanglement scaling

被引:52
|
作者
Stojevic, Vid [1 ]
Haegeman, Jutho [1 ]
McCulloch, I. P. [2 ]
Tagliacozzo, Luca [3 ]
Verstraete, Frank [1 ,4 ]
机构
[1] Univ Ghent, Dept Phys & Astron, B-9000 Ghent, Belgium
[2] Univ Queensland, Sch Phys Sci, Brisbane, Qld 4072, Australia
[3] ICFO, Inst Photon Sci, E-08860 Castelldefels, Barcelona, Spain
[4] Univ Vienna, Vienna Ctr Quantum Sci, A-1090 Vienna, Austria
来源
PHYSICAL REVIEW B | 2015年 / 91卷 / 03期
关键词
INVARIANT THEORIES; OPERATOR CONTENT; STATES;
D O I
10.1103/PhysRevB.91.035120
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
In this paper, we apply the formalism of translation invariant (continuous) matrix product states in the thermodynamic limit to (1 + 1)-dimensional critical models. Finite bond dimension bounds the entanglement entropy and introduces an effective finite correlation length, so that the state is perturbed away from criticality. The assumption that the scaling hypothesis holds for this kind of perturbation is known in the literature as finite entanglement scaling. We provide further evidence for the validity of finite entanglement scaling and based on this formulate a scaling algorithm to estimate the central charge and critical exponents of the conformally invariant field theories describing the critical models under investigation. The algorithm is applied to three exemplary models; the cMPS version to the nonrelativistic Lieb-Liniger model and the relativistic massless boson, and MPS version to the one-dimensional quantum Ising model at the critical point. Another new aspect to our approach is that we directly use the (c) MPS induced correlation length rather than the bond dimension as scaling parameter. This choice is motivated by several theoretical arguments as well as by the remarkable accuracy of our results.
引用
收藏
页数:16
相关论文
共 50 条
  • [1] Emergent Conformal Boundaries from Finite-Entanglement Scaling in Matrix Product States
    Huang, Rui-Zhen
    Zhang, Long
    Lauchli, Andreas M.
    Haegeman, Jutho
    Verstraete, Frank
    Vanderstraeten, Laurens
    PHYSICAL REVIEW LETTERS, 2024, 132 (08)
  • [2] Universal rapidity scaling of entanglement entropy inside hadrons from conformal invariance
    Gursoy, Umut
    Kharzeev, Dmitri E.
    Pedraza, Juan F.
    PHYSICAL REVIEW D, 2024, 110 (07)
  • [3] Conformal geometry from entanglement
    Kim, Isaac H.
    Li, Xiang
    Lin, Ting-Chun
    Mcgreevy, John
    Shi, Bowen
    SCIPOST PHYSICS, 2025, 18 (03):
  • [4] Finite temperature entanglement negativity in conformal field theory
    Calabrese, Pasquale
    Cardy, John
    Tonni, Erik
    JOURNAL OF PHYSICS A-MATHEMATICAL AND THEORETICAL, 2015, 48 (01)
  • [5] Entanglement Verification with Finite Data
    Blume-Kohout, Robin
    Yin, Jun O. S.
    van Enk, S. J.
    PHYSICAL REVIEW LETTERS, 2010, 105 (17)
  • [6] Finite-Entanglement Scaling of 2D Metals
    Mortier, Quinten
    Li, Ming-Hao
    Haegeman, Jutho
    Bultinck, Nick
    PHYSICAL REVIEW LETTERS, 2023, 131 (26)
  • [7] CONFORMAL-INVARIANCE AND UNIVERSALITY IN FINITE-SIZE SCALING
    CARDY, JL
    JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 1984, 17 (07): : L385 - L387
  • [8] FINITE-SIZE SCALING FUNCTIONS AND CONFORMAL-INVARIANCE
    REINICKE, P
    JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 1987, 20 (13): : 4501 - 4512
  • [9] Entanglement entropy from the truncated conformal space
    Palmai, T.
    PHYSICS LETTERS B, 2016, 759 : 439 - 445
  • [10] Finite-size scaling of entanglement entropy at the Anderson transition with interactions
    Zhao, An
    Chu, Rui-Lin
    Shen, Shun-Qing
    PHYSICAL REVIEW B, 2013, 87 (20):