Using PROs and machine learning to identify "at risk" patients for musculoskeletal injury

被引:0
|
作者
Baumhauer, Judith [1 ]
Mitten, David [1 ]
Vasalos, Kostantinos [1 ]
机构
[1] Univ Rochester, Med Ctr, Rochester, NY 14642 USA
关键词
D O I
暂无
中图分类号
R19 [保健组织与事业(卫生事业管理)];
学科分类号
摘要
引用
收藏
页码:S9 / S9
页数:1
相关论文
共 50 条
  • [1] Prediction of maternal hemorrhage: using machine learning to identify patients at risk
    Westcott, Jill M.
    Hughes, Francine
    Liu, Wenke
    Grivainis, Mark
    Keefe, David L.
    Hoskins, Iffath A.
    Fenyo, David
    AMERICAN JOURNAL OF OBSTETRICS AND GYNECOLOGY, 2020, 222 (01) : S407 - S407
  • [2] Machine Learning to Predict Lower Extremity Musculoskeletal Injury Risk in Student Athletes
    Henriquez, Maria
    Sumner, Jacob
    Faherty, Mallory
    Sell, Timothy
    Bent, Brinnae
    FRONTIERS IN SPORTS AND ACTIVE LIVING, 2020, 2
  • [3] Using Machine Learning to Identify Patients at Risk of Acquiring HIV in an Urban Health System
    Nethi, Arun Kumar
    Karam, Albert George
    Alvarez, Kristin S.
    Luque, Amneris Esther
    Nijhawan, Ank E.
    Adhikari, Emily
    King, Helen Lynne
    JAIDS-JOURNAL OF ACQUIRED IMMUNE DEFICIENCY SYNDROMES, 2024, 97 (01) : 40 - 47
  • [4] Using machine learning to identify patients with syslexia disability
    Frid, A.
    Breznitz, Z.
    JOURNAL OF MOLECULAR NEUROSCIENCE, 2013, 51 : S42 - S43
  • [5] Machine Learning to Identify Dialysis Patients at High Death Risk
    Akbilgic, Oguz
    Obi, Yoshitsugu
    Potukuchi, Praveen K.
    Karabayir, Ibrahim
    Nguyen, Danh, V
    Soohoo, Melissa
    Streja, Elani
    Molnar, Miklos Z.
    Rhee, Connie M.
    Kalantar-Zadeh, Kamyar
    Kovesdy, Csaba P.
    KIDNEY INTERNATIONAL REPORTS, 2019, 4 (09): : 1219 - 1229
  • [6] Using accelerometers to identify a high risk of catastrophic musculoskeletal injury in three racing Thoroughbreds
    Mc Sweeney, Denise
    Holmstrom, Mikael
    Donohue, Kevin D.
    Lambert, David H.
    Bayly, Warwick M.
    JAVMA-JOURNAL OF THE AMERICAN VETERINARY MEDICAL ASSOCIATION, 2024, 262 (09): : 1242 - 1250
  • [7] A machine learning framework to classify musculoskeletal injury risk groups in military service members
    Bird, Matthew B.
    Roach, Megan H.
    Nelson, Roberts G.
    Helton, Matthew S.
    Mauntel, Timothy C.
    FRONTIERS IN ARTIFICIAL INTELLIGENCE, 2024, 7
  • [8] A Machine Learning Model for Post-Concussion Musculoskeletal Injury Risk in Collegiate Athletes
    Claros, Claudio C.
    Anderson, Melissa N.
    Qian, Wei
    Brockmeier, Austin J.
    Buckley, Thomas A.
    SPORTS MEDICINE, 2025,
  • [9] Using Machine Learning to Identify Patients at High Risk of Inappropriate Drug Dosing in Periods with Renal
    Kaas-Hansen, Benjamin Skov
    Rodriguez, Cristina Leal
    Placido, Davide
    Thorsen-Meyer, Hans-Christian
    Nielsen, Anna Pors
    Derian, Nicolas
    Brunak, Soren
    Andersen, Stig Ejdrup
    CLINICAL EPIDEMIOLOGY, 2022, 14 : 213 - 223
  • [10] Using explainable machine learning to identify patients at risk of reattendance at discharge from emergency departments
    F. P. Chmiel
    D. K. Burns
    M. Azor
    F. Borca
    M. J. Boniface
    Z. D. Zlatev
    N. M. White
    T. W. V. Daniels
    M. Kiuber
    Scientific Reports, 11