Using PROs and machine learning to identify "at risk" patients for musculoskeletal injury

被引:0
|
作者
Baumhauer, Judith [1 ]
Mitten, David [1 ]
Vasalos, Kostantinos [1 ]
机构
[1] Univ Rochester, Med Ctr, Rochester, NY 14642 USA
关键词
D O I
暂无
中图分类号
R19 [保健组织与事业(卫生事业管理)];
学科分类号
摘要
引用
收藏
页码:S9 / S9
页数:1
相关论文
共 50 条
  • [1] Prediction of maternal hemorrhage: using machine learning to identify patients at risk
    Westcott, Jill M.
    Hughes, Francine
    Liu, Wenke
    Grivainis, Mark
    Keefe, David L.
    Hoskins, Iffath A.
    Fenyo, David
    [J]. AMERICAN JOURNAL OF OBSTETRICS AND GYNECOLOGY, 2020, 222 (01) : S407 - S407
  • [2] Machine Learning to Predict Lower Extremity Musculoskeletal Injury Risk in Student Athletes
    Henriquez, Maria
    Sumner, Jacob
    Faherty, Mallory
    Sell, Timothy
    Bent, Brinnae
    [J]. FRONTIERS IN SPORTS AND ACTIVE LIVING, 2020, 2
  • [3] Using Machine Learning to Identify Patients at Risk of Acquiring HIV in an Urban Health System
    Nethi, Arun Kumar
    Karam, Albert George
    Alvarez, Kristin S.
    Luque, Amneris Esther
    Nijhawan, Ank E.
    Adhikari, Emily
    King, Helen Lynne
    [J]. JAIDS-JOURNAL OF ACQUIRED IMMUNE DEFICIENCY SYNDROMES, 2024, 97 (01) : 40 - 47
  • [4] Using machine learning to identify patients with syslexia disability
    Frid, A.
    Breznitz, Z.
    [J]. JOURNAL OF MOLECULAR NEUROSCIENCE, 2013, 51 : S42 - S43
  • [5] Machine Learning to Identify Dialysis Patients at High Death Risk
    Akbilgic, Oguz
    Obi, Yoshitsugu
    Potukuchi, Praveen K.
    Karabayir, Ibrahim
    Nguyen, Danh, V
    Soohoo, Melissa
    Streja, Elani
    Molnar, Miklos Z.
    Rhee, Connie M.
    Kalantar-Zadeh, Kamyar
    Kovesdy, Csaba P.
    [J]. KIDNEY INTERNATIONAL REPORTS, 2019, 4 (09): : 1219 - 1229
  • [6] A machine learning framework to classify musculoskeletal injury risk groups in military service members
    Bird, Matthew B.
    Roach, Megan H.
    Nelson, Roberts G.
    Helton, Matthew S.
    Mauntel, Timothy C.
    [J]. FRONTIERS IN ARTIFICIAL INTELLIGENCE, 2024, 7
  • [7] Using Machine Learning to Identify Patients at High Risk of Inappropriate Drug Dosing in Periods with Renal
    Kaas-Hansen, Benjamin Skov
    Rodriguez, Cristina Leal
    Placido, Davide
    Thorsen-Meyer, Hans-Christian
    Nielsen, Anna Pors
    Derian, Nicolas
    Brunak, Soren
    Andersen, Stig Ejdrup
    [J]. CLINICAL EPIDEMIOLOGY, 2022, 14 : 213 - 223
  • [8] Predicting Patient Mortality: Using Machine Learning to Identify At-Risk Patients and Improve Outcomes
    Barton, C.
    Mohamadlou, H.
    Lynn-Palevsky, A.
    Fletcher, G.
    Shieh, L.
    Stark, P.
    Chettipally, U.
    Shimabukuro, D. W.
    Feldman, M.
    Das, R.
    [J]. AMERICAN JOURNAL OF RESPIRATORY AND CRITICAL CARE MEDICINE, 2018, 197
  • [9] Using explainable machine learning to identify patients at risk of reattendance at discharge from emergency departments
    F. P. Chmiel
    D. K. Burns
    M. Azor
    F. Borca
    M. J. Boniface
    Z. D. Zlatev
    N. M. White
    T. W. V. Daniels
    M. Kiuber
    [J]. Scientific Reports, 11
  • [10] Using explainable machine learning to identify patients at risk of reattendance at discharge from emergency departments
    Chmiel, F. P.
    Burns, D. K.
    Azor, M.
    Borca, F.
    Boniface, M. J.
    Zlatev, Z. D.
    White, N. M.
    Daniels, T. W., V
    Kiuber, M.
    [J]. SCIENTIFIC REPORTS, 2021, 11 (01)