Prediction of maternal hemorrhage: using machine learning to identify patients at risk

被引:2
|
作者
Westcott, Jill M. [1 ]
Hughes, Francine [2 ]
Liu, Wenke [1 ]
Grivainis, Mark [1 ]
Keefe, David L. [1 ]
Hoskins, Iffath A. [1 ]
Fenyo, David [1 ]
机构
[1] NYU, New York, NY USA
[2] Montefiore Med Ctr, 111 E 210th St, Bronx, NY 10467 USA
关键词
D O I
10.1016/j.ajog.2019.11.653
中图分类号
R71 [妇产科学];
学科分类号
100211 ;
摘要
638
引用
收藏
页码:S407 / S407
页数:1
相关论文
共 50 条
  • [1] Prediction of Maternal Hemorrhage Using Machine Learning: Retrospective Cohort Study
    Westcott, Jill M.
    Hughes, Francine
    Liu, Wenke
    Grivainis, Mark
    Hoskins, Iffath
    Fenyo, David
    [J]. JOURNAL OF MEDICAL INTERNET RESEARCH, 2022, 24 (07)
  • [2] Machine Learning Prediction of Suicide Risk Does Not Identify Patients Without Traditional Risk Factors
    Cruz, Maricela
    Shortreed, Susan M.
    Richards, Julie E.
    Coley, R. Yates
    Yarborough, Bobbi Jo
    Walker, Rod L.
    Johnson, Eric
    Ahmedani, Brian K.
    Rossom, Rebecca
    Coleman, Karen J.
    Boggs, Jennifer M.
    Beck, Arne L.
    Simon, Gregory E.
    [J]. JOURNAL OF CLINICAL PSYCHIATRY, 2022, 83 (05)
  • [3] Using PROs and machine learning to identify "at risk" patients for musculoskeletal injury
    Baumhauer, Judith
    Mitten, David
    Vasalos, Kostantinos
    [J]. QUALITY OF LIFE RESEARCH, 2018, 27 : S9 - S9
  • [4] Prediction of Acute Kidney Injury in Intracerebral Hemorrhage Patients Using Machine Learning
    She, Suhua
    Shen, Yulong
    Luo, Kun
    Zhang, Xiaohai
    Luo, Changjun
    [J]. NEUROPSYCHIATRIC DISEASE AND TREATMENT, 2023, 19 : 2765 - 2773
  • [5] Machine Learning for Onset Prediction of Patients with Intracerebral Hemorrhage
    Rusche, Thilo
    Wasserthal, Jakob
    Breit, Hanns-Christian
    Fischer, Urs
    Guzman, Raphael
    Fiehler, Jens
    Psychogios, Marios-Nikos
    Sporns, Peter B.
    [J]. JOURNAL OF CLINICAL MEDICINE, 2023, 12 (07)
  • [6] Multivariable Risk Prediction of Dysphagia in Hospitalized Patients Using Machine Learning
    Lienhart, Anna Maria
    Kramer, Diether
    Jauk, Stefanie
    Gugatschka, Markus
    Leodolter, Werner
    Schlegl, Thomas
    [J]. DHEALTH 2020 - BIOMEDICAL INFORMATICS FOR HEALTH AND CARE, 2020, 271 : 31 - 38
  • [7] Using Machine Learning to Identify Patients at Risk of Acquiring HIV in an Urban Health System
    Nethi, Arun Kumar
    Karam, Albert George
    Alvarez, Kristin S.
    Luque, Amneris Esther
    Nijhawan, Ank E.
    Adhikari, Emily
    King, Helen Lynne
    [J]. JAIDS-JOURNAL OF ACQUIRED IMMUNE DEFICIENCY SYNDROMES, 2024, 97 (01) : 40 - 47
  • [8] Using machine learning to identify patients with syslexia disability
    Frid, A.
    Breznitz, Z.
    [J]. JOURNAL OF MOLECULAR NEUROSCIENCE, 2013, 51 : S42 - S43
  • [9] Using Machine Learning to Develop a Prediction Model to Identify Patients with Hemophilia A in an Administrative Claims Database
    Lyons, Jennifer L.
    Desai, Vibha
    Jemison, Jamileh
    Xu, Yaping
    Ridgeway, Greg
    Finkle, William
    Solari, Paul G.
    Sullivan, Sean D.
    Lanes, Stephan
    [J]. PHARMACOEPIDEMIOLOGY AND DRUG SAFETY, 2017, 26 : 210 - 211
  • [10] Machine Learning to Identify Dialysis Patients at High Death Risk
    Akbilgic, Oguz
    Obi, Yoshitsugu
    Potukuchi, Praveen K.
    Karabayir, Ibrahim
    Nguyen, Danh, V
    Soohoo, Melissa
    Streja, Elani
    Molnar, Miklos Z.
    Rhee, Connie M.
    Kalantar-Zadeh, Kamyar
    Kovesdy, Csaba P.
    [J]. KIDNEY INTERNATIONAL REPORTS, 2019, 4 (09): : 1219 - 1229