Mechanisms of antifreeze proteins investigated via the site-directed spin labeling technique

被引:15
|
作者
Flores, Antonia [1 ]
Quon, Justin C. [1 ]
Perez, Adiel F. [1 ]
Ba, Yong [1 ]
机构
[1] Calif State Univ Los Angeles, Dept Chem & Biochem, 5151 State Univ Dr, Los Angeles, CA 90032 USA
基金
美国国家卫生研究院;
关键词
Type-I antifreeze protein; Site-directed spin labeling; VT EPR; Ice crystals; Ice growth inhibition; Ice nucleation inhibition; POINT-DEPRESSING GLYCOPROTEINS; ICE GROWTH-INHIBITION; WINTER FLOUNDER; FREEZING RESISTANCE; PSEUDOPLEURONECTES-AMERICANUS; PHYSICAL-PROPERTIES; AQUEOUS-SOLUTIONS; ANTARCTIC FISHES; NMR; BINDING;
D O I
10.1007/s00249-018-1285-3
中图分类号
Q6 [生物物理学];
学科分类号
071011 ;
摘要
The site-directed spin labeling (SDSL) technique was used to examine the antifreeze mechanisms of type-I antifreeze proteins (AFPs). The effects on the growth of seed ice crystals by the spin-label groups attached to different side chains of the AFPs were observed, and the states of water molecules surrounding the spin-label groups were probed via analyses of variable-temperature (VT) dependent electron paramagnetic resonance (EPR) spectra. The first set of experiments revealed the antifreeze activities of the spin-labeled AFPs at the microscopic level, while the second set of experiments displayed those at the molecular level. The experimental results confirmed the putative ice-binding surface (IBS) of type-I AFPs. The VT EPR spectra indicate that type-I AFPs can inhibit the nucleation of seed ice crystals down to similar to - 20 degrees C in their aqueous solutions. Thus, the present authors believe that AFPs protect organisms from freezing damage in two ways: (1) inhibiting the nucleation of seed ice crystals, and (2) hindering the growth of seed ice crystals once they have formed. The first mechanism should play a more significant role in protecting against freezing damage among organisms living in cold environments. The VT EPR spectra also revealed that liquid-like water molecules existed around the spin-labeled non-ice-binding side chains of the AFPs frozen within the ice matrices, and ice surrounding the spin-label groups melted at subzero temperatures during the heating process. This manuscript concludes with the proposed model of antifreeze mechanisms of AFPs based on the experimental results.
引用
收藏
页码:611 / 630
页数:20
相关论文
共 50 条
  • [21] Noncovalent and Site-Directed Spin Labeling of Nucleic Acids
    Shelke, Sandip A.
    Sigurdsson, Snorri Th.
    ANGEWANDTE CHEMIE-INTERNATIONAL EDITION, 2010, 49 (43) : 7984 - 7986
  • [22] Identifying conformational changes with site-directed spin labeling
    Hubbell, WL
    Cafiso, DS
    Altenbach, C
    NATURE STRUCTURAL BIOLOGY, 2000, 7 (09) : 735 - 739
  • [23] Mapping backbone dynamics with site-directed spin labeling
    Columbus, L
    Kálai, T
    Jeko, J
    Hideg, K
    Hubbell, WL
    BIOPHYSICAL JOURNAL, 2001, 80 (01) : 174A - 174A
  • [24] Applications of site-directed spin labeling to structural biology
    Cafiso, DS
    ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY, 2005, 230 : U330 - U330
  • [25] Wayne Hubbell and the Path to Site-Directed Spin Labeling
    Cafiso, David S.
    APPLIED MAGNETIC RESONANCE, 2024, 55 (1-3) : 5 - 10
  • [26] Mapping Molecular Flexibility of Proteins with Site-Directed Spin Labeling: A Case Study of Myoglobin
    Lopez, Carlos J.
    Oga, Shirley
    Hubbell, Wayne L.
    BIOCHEMISTRY, 2012, 51 (33) : 6568 - 6583
  • [27] Identifying and Quantitating Conformational Exchange in Membrane Proteins Using Site-Directed Spin Labeling
    Cafiso, David S.
    ACCOUNTS OF CHEMICAL RESEARCH, 2014, 47 (10) : 3102 - 3109
  • [28] Non-canonical amino acids for site-directed spin labeling of membrane proteins
    Ledwitch, Kaitlyn
    Kunze, Georg
    Okwei, Elleansar
    Sala, Davide
    Meiler, Jens
    CURRENT OPINION IN STRUCTURAL BIOLOGY, 2024, 89
  • [29] Attaching a spin to a protein - site-directed spin labeling in structural biology
    Czogalla, Aleksander
    Pieciul, Aldona
    Jezierski, Adam
    Sikorski, Aleksander F.
    ACTA BIOCHIMICA POLONICA, 2007, 54 (02) : 235 - 244
  • [30] Site-directed spin-labeling of myosin II mutants
    Klein, JC
    Blakely, SE
    Surek, JT
    Titus, MA
    Thomas, DD
    BIOPHYSICAL JOURNAL, 2004, 86 (01) : 484A - 484A