Data Compression for Synthetic Aperture Radar and Resolution Improvement

被引:0
|
作者
Wu, Na [1 ]
Liang, Qilian [1 ]
Durrani, Tariq S. [2 ]
机构
[1] Univ Texas Arlington, Dept Elect Engn, Arlington, TX 76019 USA
[2] Univ Strathclyde, Dept Elect & Elect Engn, Glasgow, Lanark, Scotland
基金
美国国家科学基金会;
关键词
D O I
暂无
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
This paper studies co-prime sampling for two-dimensional synthetic aperture radar (SAR) imaging and proposes a new approach based on co-prime up-sampling and compressive sensing to improve the resolution of SAR images. In order to decrease the redundancy in SAR phase history, we extend the co-prime down sampling structure to the fast-time domain and introduce a random matrix to compress the data in the slow-time domain. Since the SAR image is very sparse, directly applying compressive sensing algorithm can not recover clear picture. As a result, co-prime up-sampling with gradient projection for sparse reconstruction (GPSR) algorithm is proposed in this work. Simulation results show that even after data reduction, the new approach could still acquire high resolution images. The compression ratio could be 10:1 overall.
引用
收藏
页码:227 / 231
页数:5
相关论文
共 50 条
  • [31] Lynx: A high-resolution synthetic aperture radar
    Tsunoda, SI
    Pace, F
    Stence, J
    Woodring, M
    Hensley, WH
    Doerry, AW
    Walker, BC
    2000 IEEE AEROSPACE CONFERENCE PROCEEDINGS, VOL 5, 2000, : 51 - 58
  • [32] Resolution and synthetic aperture characterization of sparse radar arrays
    Goodman, NA
    Stiles, JM
    IEEE TRANSACTIONS ON AEROSPACE AND ELECTRONIC SYSTEMS, 2003, 39 (03) : 921 - 935
  • [33] Bistatic synthetic aperture radar data processing
    Rodriguez-Cassola, M., 1600, Deutschen Forschungsanstalt fur Luft-und Raumfahrt
  • [34] Super-Resolution of Synthetic Aperture Radar Complex Data by Deep-Learning
    Addabbo, Pia
    Bernardi, Mario Luca
    Biondi, Filippo
    Cimitile, Marta
    Clemente, Carmine
    Fiscante, Nicomino
    Giunta, Gaetano
    Orlando, Danilo
    2022 IEEE INTERNATIONAL WORKSHOP ON METROLOGY FOR AEROSPACE (IEEE METROAEROSPACE 2022), 2022, : 237 - 241
  • [35] ULTRA-HIGH RESOLUTION SLIDING SPOTLIGHT SYNTHETIC APERTURE RADAR DATA PROCESSING
    Chen, Qi
    He, Feng
    Dong, Zhen
    FOURTH INTERNATIONAL CONFERENCE ON COMPUTER AND ELECTRICAL ENGINEERING (ICCEE 2011), 2011, : 637 - 642
  • [36] Super-Resolution of Synthetic Aperture Radar Complex Data by Deep-Learning
    Addabbo, Pia
    Bernardi, Mario Luca
    Biondi, Filippo
    Cimitile, Marta
    Clemente, Carmine
    Fiscante, Nicomino
    Giunta, Gaetano
    Orlando, Danilo
    Yan, Linjie
    IEEE ACCESS, 2023, 11 : 23647 - 23658
  • [37] Computer simulation of synthetic aperture radar data
    Robertson, AE
    Arnold, DV
    Long, DG
    IGARSS '98 - 1998 INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM, PROCEEDINGS VOLS 1-5: SENSING AND MANAGING THE ENVIRONMENT, 1998, : 1086 - 1087
  • [38] Preserving exponentials in synthetic aperture radar data
    Pepin, MP
    Sacchini, JJ
    IGARSS '96 - 1996 INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM: REMOTE SENSING FOR A SUSTAINABLE FUTURE, VOLS I - IV, 1996, : 54 - 56
  • [39] Registering of synthetic aperture radar and optical data
    Galland, F
    Tupin, F
    Nicolas, JM
    Roux, M
    IGARSS 2005: IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM, VOLS 1-8, PROCEEDINGS, 2005, : 3513 - 3516
  • [40] PROCESSING OF SYNTHETIC APERTURE RADAR DATA WITH GPGPU
    Clemente, Carmine
    di Bisceglie, Maurizio
    Di Santo, Michele
    Ranaldo, Nadia
    Spinelli, Marcello
    SIPS: 2009 IEEE WORKSHOP ON SIGNAL PROCESSING SYSTEMS, 2009, : 309 - 314