Research Agenda for Basic Explainable AI

被引:0
|
作者
Lukyanenko, Roman [1 ]
Castellanos, Arturo [2 ]
Samuel, Binny M. [3 ]
Tremblay, Monica [4 ]
Maass, Wolfgang [5 ]
机构
[1] HEC Montreal, Montreal, PQ, Canada
[2] CUNY, Baruch Coll, New York, NY 10021 USA
[3] Univ Cincinnati, Cincinnati, OH 45221 USA
[4] Coll William & Mary, Williamsburg, VA 23187 USA
[5] Saarland Univ, German Res Ctr Artificial Intelligence DFKI, Saarbrucken, Germany
关键词
Explainable AI; machine learning; basic level categories; Basic XAI; model interpretability; QUALITY;
D O I
暂无
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Artificial Intelligence is increasingly driven by powerful but often opaque machine learning algorithms. These black-box algorithms achieve high performance but are not explainable to humans in a systematic and interpretable manner, a challenge known as Explainable AI (XAI). Informed by a synthesis of two converging literature streams on information systems development and psychology, we propose a new XAI approach termed Basic Explainable AI and a subsequent research agenda. We propose four research directions that focus on providing explanations by proactively considering the target audience's mental models and making the explanations maximally accessible to heterogeneous nonexpert users.
引用
收藏
页数:5
相关论文
共 50 条
  • [31] AI at Home: An Urgent Urban Policy and Research Agenda
    Strengers, Yolande
    URBAN POLICY AND RESEARCH, 2022, 40 (03) : 250 - 258
  • [32] AI incidents and 'networked trouble': The case for a research agenda
    Shaffer Shane, Tommy
    BIG DATA & SOCIETY, 2023, 10 (02)
  • [33] Machines as teammates: A research agenda on AI in team collaboration
    Seeber, Isabella
    Bittner, Eva
    Briggs, Robert O.
    de Vreede, Triparna
    de Vreede, Gert-Jan
    Elkins, Aaron
    Maier, Ronald
    Merz, Alexander B.
    Oeste-Reiss, Sarah
    Randrup, Nils
    Schwabe, Gerhard
    Sollner, Matthias
    INFORMATION & MANAGEMENT, 2020, 57 (02)
  • [34] Responsible AI for Digital Health: a Synthesis and a Research Agenda
    Trocin, Cristina
    Mikalef, Patrick
    Papamitsiou, Zacharoula
    Conboy, Kieran
    INFORMATION SYSTEMS FRONTIERS, 2023, 25 (06) : 2139 - 2157
  • [35] Modelling and Influencing the AI Bidding War: A Research Agenda
    Han, The Anh
    Pereira, Luis Moniz
    Lenaerts, Tom
    AIES '19: PROCEEDINGS OF THE 2019 AAAI/ACM CONFERENCE ON AI, ETHICS, AND SOCIETY, 2019, : 5 - 11
  • [36] Explainable AI (ex-AI)
    Holzinger, Andreas
    Informatik-Spektrum, 2018, 41 (02) : 138 - 143
  • [37] From "Explainable AI" to "Graspable AI"
    Ghajargar, Maliheh
    Bardzell, Jeffrey
    Renner, Alison Smith
    Krogh, Peter Gall
    Hook, Kristina
    Cuartielles, David
    Boer, Laurens
    Wiberg, Mikael
    PROCEEDINGS OF THE FIFTEENTH INTERNATIONAL CONFERENCE ON TANGIBLE, EMBEDDED, AND EMBODIED INTERACTION, TEI 2021, 2021,
  • [38] Introduction to Explainable AI
    Liao, Q. Vera
    Singh, Moninder
    Zhang, Yunfeng
    Bellamy, Rachel K. E.
    EXTENDED ABSTRACTS OF THE 2021 CHI CONFERENCE ON HUMAN FACTORS IN COMPUTING SYSTEMS (CHI'21), 2021,
  • [39] Introduction to Explainable AI
    Liao, Q. Vera
    Singh, Moninder
    Zhang, Yunfeng
    Bellamy, Rachel K. E.
    CHI'20: EXTENDED ABSTRACTS OF THE 2020 CHI CONFERENCE ON HUMAN FACTORS IN COMPUTING SYSTEMS, 2020,
  • [40] Explainable AI for RAMS
    Zaman, Navid
    Apostolou, Evan
    Li, Yan
    Oister, Ken
    2022 68TH ANNUAL RELIABILITY AND MAINTAINABILITY SYMPOSIUM (RAMS 2022), 2022,