Uncertain fuzzy clustering: Insights and recommendations

被引:64
|
作者
Rhee, Frank Chung-Hoon [1 ]
机构
[1] Hanyang Univ, Seoul 133791, South Korea
关键词
(Edited Abstract);
D O I
10.1109/MCI.2007.357193
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
The interval type-2 fuzzy sets were used to model the uncertainty that is associated with the various parameters in objective function-based clustering to represent and manage the uncertainty in the cluster memberships. The clustering methods were obtained by modifying the prototype-updating and hard-partitioning procedures in the type-1 fuzzy objective function-based clustering. The management of uncertainty by an interval type-2 fuzzy approach aids cluster prototypes to converge to a more desirable location than a type-1 fuzzy approach. The uncertainty associated with the parameters for other existing clustering algorithms can be considered in the development of several other interval type-2 clustering algorithms.
引用
收藏
页码:44 / 56
页数:13
相关论文
共 50 条
  • [21] Representative Clustering of Uncertain Data
    Zuefle, Andreas
    Emrich, Tobias
    Schmid, Klaus Arthur
    Mamoulis, Nikos
    Zimkek, Arthur
    Renz, Matthias
    PROCEEDINGS OF THE 20TH ACM SIGKDD INTERNATIONAL CONFERENCE ON KNOWLEDGE DISCOVERY AND DATA MINING (KDD'14), 2014, : 243 - 252
  • [22] Reliable Clustering on Uncertain Graphs
    Liu, Lin
    Jin, Ruoming
    Aggarwal, Charu
    Shen, Yelong
    12TH IEEE INTERNATIONAL CONFERENCE ON DATA MINING (ICDM 2012), 2012, : 459 - 468
  • [23] A Framework for Clustering Uncertain Data
    Schubert, Erich
    Koos, Alexander
    Emrich, Tobias
    Zuefle, Andreas
    Schmid, Klaus Arthur
    Zimek, Arthur
    PROCEEDINGS OF THE VLDB ENDOWMENT, 2015, 8 (12): : 1977 - 1980
  • [24] Efficient clustering of uncertain data
    Ngai, Wang Kay
    Kao, Ben
    Chui, Chun Kit
    Cheng, Reynold
    Chau, Michael
    Yip, Kevin Y.
    ICDM 2006: SIXTH INTERNATIONAL CONFERENCE ON DATA MINING, PROCEEDINGS, 2006, : 436 - 445
  • [25] A Model of Clustering Uncertain Data
    Yang, Zengfang
    Tang, Hewen
    CONFERENCE ON WEB BASED BUSINESS MANAGEMENT, VOLS 1-2, 2010, : 969 - 972
  • [26] Bayesian clustering with uncertain data
    Nicholls, Kath
    Kirk, Paul D. W.
    Wallace, Chris
    PLOS COMPUTATIONAL BIOLOGY, 2024, 20 (09)
  • [27] Analysis of Qatar's electricity landscape: Insights from load profiling, clustering, and policy recommendations
    Monawwar, Haya
    Abedrabboh, Khaled
    Almarri, Omar
    Ahmad, Furkan
    Al-Fagih, Luluwah
    ENERGY REPORTS, 2024, 12 : 259 - 276
  • [28] Ambiguity-driven fuzzy C-means clustering: how to detect uncertain clustered records
    Ghaffari, Meysam
    Ghadiri, Nasser
    APPLIED INTELLIGENCE, 2016, 45 (02) : 293 - 304
  • [29] Ambiguity-driven fuzzy C-means clustering: how to detect uncertain clustered records
    Meysam Ghaffari
    Nasser Ghadiri
    Applied Intelligence, 2016, 45 : 293 - 304
  • [30] Fuzzy c-Means Clustering for Uncertain Data Using Quadratic Penalty-Vector Regularization
    Endo, Yasunori
    Hasegawa, Yasushi
    Yukihiro, Hamasuna
    Kanzawa, Yuchi
    JOURNAL OF ADVANCED COMPUTATIONAL INTELLIGENCE AND INTELLIGENT INFORMATICS, 2011, 15 (01) : 76 - 82