Mechanical contact in composite electrodes of lithium-ion batteries

被引:17
|
作者
Lu, Bo [1 ,2 ,3 ]
Zhao, Yanfei [4 ]
Feng, Jiemin [1 ,3 ]
Song, Yicheng [1 ,3 ]
Zhang, Junqian [1 ,3 ]
机构
[1] Shanghai Univ, Shanghai Inst Appl Math & Mech, Sch Mech & Engn Sci, Shanghai 200444, Peoples R China
[2] China Univ Geosci, Engn Res Ctr Nanogeo Mat, Minist Educ, Wuhan 430074, Hubei, Peoples R China
[3] Shanghai Univ, Shanghai Key Lab Mech Energy Engn, Shanghai 200072, Peoples R China
[4] Shanghai Univ, Dept Civil Engn, Shanghai 200444, Peoples R China
基金
中国国家自然科学基金;
关键词
Mechanical contact; Active particle; Current collector; Contact stress; Lithium ion battery; STRESS GENERATION; LIFE PREDICTION; CAPACITY-LOSS; DEGRADATION; PERFORMANCE; RESISTANCE; EVOLUTION; FRACTURE; INTERCALATION; SIMULATION;
D O I
10.1016/j.jpowsour.2019.227115
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
An analytical model of mechanical contact problems in composite electrodes of lithium-ion batteries is developed in this article. Two typical types of mechanical contact, namely contact between particles and contact between particle and current collector, are investigated. Key parameters that affect the contact problem are identified from the analytical solution. High uniformity of the particle size is found to be critical to the electrode. Furthermore, a soft current collector could significantly reduce the contact stress and hence is also suggested. It is figured out that contact stress is comparable to or even higher than the diffusion-induced stress under free-expansion state, even if the mechanical constraint in electrodes is weak. To highlight the significance of contact stress, an electrochemical cycling verification experiment which involves a charging pause is conducted. Both analytical and experimental results indicate that the mechanical contact plays a crucial role in the evaluation of mechanical stability of lithium-ion battery electrodes.
引用
收藏
页数:12
相关论文
共 50 条
  • [41] Film formation at positive electrodes in lithium-ion batteries
    Würsig, A
    Buqa, H
    Holzapfel, M
    Krumeich, F
    Novák, P
    ELECTROCHEMICAL AND SOLID STATE LETTERS, 2005, 8 (01) : A34 - A37
  • [42] Assessment of the wettability of porous electrodes for lithium-ion batteries
    Wu, MS
    Liao, TL
    Wang, YY
    Wan, CC
    JOURNAL OF APPLIED ELECTROCHEMISTRY, 2004, 34 (08) : 797 - 805
  • [43] Viability of Additively Manufactured Electrodes for Lithium-Ion Batteries
    Cross, Nicholas R.
    Li, Hanyu
    Roy, Thomas
    Ehlinger, Victoria M.
    Lin, Tiras Y.
    Brady, Nicholas W.
    Chandrasekaran, Swetha
    Worsley, Marcus A.
    Bucci, Giovanna
    ACS APPLIED ENGINEERING MATERIALS, 2024, 3 (01): : 214 - 224
  • [44] Interfacial Fracture of Nanowire Electrodes of Lithium-Ion Batteries
    G. R. Hardin
    Y. Zhang
    C. D. Fincher
    M. Pharr
    JOM, 2017, 69 : 1519 - 1523
  • [45] ZnO Nanocrystals as Anode Electrodes for Lithium-Ion Batteries
    Zhang, Wenhui
    Du, Lijuan
    Chen, Zongren
    Hong, Juan
    Yue, Lu
    JOURNAL OF NANOMATERIALS, 2016, 2016
  • [46] Assessment of the wettability of porous electrodes for lithium-ion batteries
    Wu, Mao-Sung
    Liao, Tzu-Ling
    Wang, Yung-Yun
    Wan, Chi-Chao
    Journal of Applied Electrochemistry, 2004, 34 (08): : 797 - 805
  • [47] Assessment of the Wettability of Porous Electrodes for Lithium-Ion Batteries
    Mao-Sung Wu
    Tzu-Ling Liao
    Yung-Yun Wang
    Chi-Chao Wan
    Journal of Applied Electrochemistry, 2004, 34 : 797 - 805
  • [48] Oxide materials as positive electrodes for lithium-ion batteries
    Makhonina, EV
    Pervov, VS
    Dubasova, VS
    USPEKHI KHIMII, 2004, 73 (10) : 1075 - 1087
  • [49] Electro-Chemo-Mechanical Model for the Damage in Porous Electrodes of Lithium-Ion Batteries
    Xi, Yalu
    Zhang, Fangzhou
    Huang, Qiu-An
    Bai, Yuxuan
    Zhang, Jiujun
    JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 2024, 171 (06)
  • [50] Mechanical Stability of the Heterogenous Bilayer Solid Electrolyte Interphase in the Electrodes of Lithium-Ion Batteries
    Ali, Yasir
    Iqbal, Noman
    Shah, Imran
    Lee, Seungjun
    MATHEMATICS, 2023, 11 (03)