MicroRNA-135a alleviates oxygen-glucose deprivation and reoxygenation-induced injury in neurons through regulation of GSK-3β/Nrf2 signaling

被引:12
|
作者
Liu, Xiaobin [1 ]
Li, Min [1 ]
Hou, Mingshan [1 ]
Huang, Weidong [1 ]
Song, Jinning [2 ]
机构
[1] Xi An Jiao Tong Univ, Affiliated Hosp 3, Shaanxi Prov Peoples Hosp, Dept Neurosurg, Xian 710068, Shaanxi, Peoples R China
[2] Xi An Jiao Tong Univ, Affiliated Hosp 1, Dept Neurosurg, Xian 710061, Shaanxi, Peoples R China
关键词
GSK-3; ischemia and reperfusion injury; miR-135a; Nrf2; OGD/R; CEREBRAL ISCHEMIA/REPERFUSION INJURY; GLYCOGEN-SYNTHASE KINASE-3-BETA; ISCHEMIA-REPERFUSION INJURY; TRANSCRIPTION FACTOR NRF2; OXIDATIVE STRESS; DOWN-REGULATION; PATHWAY; ACTIVATION; CELLS; PHOSPHORYLATION;
D O I
10.1002/jbt.22159
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
MicroRNAs (miRNAs) have been suggested as pivotal regulators in the pathological process of cerebral ischemia and reperfusion injury. In this study, we aimed to investigate the role of miR-135a in regulating neuronal survival in cerebral ischemia and reperfusion injury using an in vitro cellular model induced by oxygen-glucose deprivation and reoxygenation (OGD/R). Our results showed that miR-135a expression was significantly decreased in neurons with OGD/R treatment. Overexpression of miR-135a significantly alleviated OGD/R-induced cell injury and oxidative stress, whereas inhibition of miR-135a showed the opposite effects. Glycogen synthase kinase-3 (GSK-3) was identified as a potential target gene of miR-135a. miR-135a was found to inhibit GSK-3 expression, but promote the expression of nuclear factor erythroid 2-related factor 2 (Nrf2) and downstream signaling. However, overexpression of GSK-3 significantly reversed miR-135a-induced neuroprotective effect. Overall, our results suggest that miR-135a protects neurons against OGD/R-induced injury through downregulation of GSK-3 and upregulation of Nrf2 signaling.
引用
收藏
页数:8
相关论文
共 50 条
  • [31] Cryptotanshinone protects hippocampal neurons against oxygen-glucose deprivation-induced injury through the activation of Nrf2/HO-1 signaling pathway
    Xu, Dong
    Gui, Chengli
    Zhao, Haiyan
    Liu, Fengli
    FOOD SCIENCE AND TECHNOLOGY, 2022, 42
  • [32] Role of GSK-3β inhibitor TWS119 in protecting neurons against oxygen-glucose deprivation injury
    Yu, Xiaowen
    Wang, Xiaoqing
    Zeng, Shuxiong
    Tuo, Xiping
    INTERNATIONAL JOURNAL OF CLINICAL AND EXPERIMENTAL MEDICINE, 2017, 10 (10): : 14519 - 14525
  • [33] Aquaporin 4 regulation by ginsenoside Rb1 intervenes with oxygen-glucose deprivation/reoxygenation-induced astrocyte injury
    Li, Ya-Nan
    Gao, Zhong-Wen
    Li, Ran
    Zhang, Yun-Feng
    Zhu, Qing-San
    Huang, Fei
    MEDICINE, 2019, 98 (42) : e17591
  • [34] MicroRNA-98-5p ameliorates oxygen-glucose deprivation/reoxygenation (OGD/R)-induced neuronal injury by inhibiting Bach1 and promoting Nrf2/ARE signaling
    Sun, Xiuyan
    Li, Xiaoming
    Ma, Sirui
    Guo, Yong
    Li, Yanling
    BIOCHEMICAL AND BIOPHYSICAL RESEARCH COMMUNICATIONS, 2018, 507 (1-4) : 114 - 121
  • [35] Inhibition of microRNA-148b-3p alleviates oxygen-glucose deprivation/reoxygenation-induced apoptosis and oxidative stress in HT22 hippocampal neuron via reinforcing Sestrin2/Nrf2 signalling
    Du, Yin
    Ma, Xiaozhen
    Ma, Lei
    Li, Siyuan
    Zheng, Juan
    Lv, Junlin
    Cui, Long
    Lv, Jianrui
    CLINICAL AND EXPERIMENTAL PHARMACOLOGY AND PHYSIOLOGY, 2020, 47 (04) : 561 - 570
  • [36] Resveratrol alleviates oxygen/glucose deprivation/reoxygenation-induced neuronal damage through induction of mitophagy
    Ye, Ming
    Wu, Hui
    Li, Shuguo
    MOLECULAR MEDICINE REPORTS, 2021, 23 (01) : 1 - 10
  • [37] Hyodeoxycholic acid protects the neurovascular unit against oxygen-glucose deprivation and reoxygenation-induced injury in vitro
    Li, Chang-Xiang
    Wang, Xue-Qian
    Cheng, Fa-Feng
    Yan, Xin
    Luo, Juan
    Wang, Qing-Guo
    NEURAL REGENERATION RESEARCH, 2019, 14 (11) : 1941 - 1949
  • [38] Hyodeoxycholic acid protects the neurovascular unit against oxygen-glucose deprivation and reoxygenation-induced injury in vitro
    Chang-Xiang Li
    Xue-Qian Wang
    Fa-Feng Cheng
    Xin Yan
    Juan Luo
    Qing-Guo Wang
    Neural Regeneration Research, 2019, 14 (11) : 1941 - 1949
  • [39] Naoxintong Protects Primary Neurons from Oxygen-Glucose Deprivation/Reoxygenation Induced Injury through PI3K-Akt Signaling Pathway
    Ma, Yan
    Zhao, Pei
    Zhu, Jinqiang
    Yan, Chen
    Li, Lin
    Zhang, Han
    Zhang, Meng
    Gao, Xiumei
    Fan, Xiang
    EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE, 2016, 2016
  • [40] JZL184 protects hippocampal neurons from oxygen-glucose deprivation-induced injury via activating Nrf2/ARE signaling pathway
    Xu, Jing
    Guo, Qinyue
    Huo, Kang
    Song, Yinxue
    Li, Na
    Du, Junkai
    HUMAN & EXPERIMENTAL TOXICOLOGY, 2021, 40 (07) : 1084 - 1094