Classification of Hyperspectral Images based on Intrinsic Image Decomposition and Deep Convolutional Neural Network

被引:1
|
作者
Beirami, Behnam Asghari [1 ]
Mokhtarzade, Mehdi [1 ]
机构
[1] KN Toosi Univ Technol, Dept Geodesy & Geomat, Tehran, Iran
来源
2020 6TH IRANIAN CONFERENCE ON SIGNAL PROCESSING AND INTELLIGENT SYSTEMS (ICSPIS) | 2020年
关键词
Hyperspectral images; Intrinsic image decomposition; Convolutional neural network; Albedo; Shading;
D O I
10.1109/ICSPIS51611.2020.9349531
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
In this paper, a new simple spatial-spectral method is proposed to classify hyperspectral images. It is based on the combination of a deep convolutional neural network (DCNN) and intrinsic image decomposition (IID). First, the dimensionality of the hyperspectral image is reduced based on a band grouping technique and mean operator. Afterward, albedo and shading components of these reduced features are recovered. Finally, stacked albedo and shading components are classified by DCNN. Experiments are applied to Pavia University's hyperspectral image from an urban area. Classification accuracy of the proposed method with only I% of training data can reach about 99%, which is prominent according to state-of-the-art methods.
引用
收藏
页数:5
相关论文
共 50 条
  • [21] Deep convolutional neural network based hyperspectral brain tissue classification
    Poonkuzhali, P.
    Prabha, K. Helen
    JOURNAL OF X-RAY SCIENCE AND TECHNOLOGY, 2023, 31 (04) : 777 - 796
  • [22] Deep Convolutional Neural Network based Ship Images Classification
    Mishra, Narendra Kumar
    Kumar, Ashok
    Choudhury, Kishor
    DEFENCE SCIENCE JOURNAL, 2021, 71 (02) : 200 - 208
  • [23] A Multi-scale Convolutional Neural Network Based on Multilevel Wavelet Decomposition for Hyperspectral Image Classification
    Yang C.
    Song D.
    Wang B.
    Tang Y.
    Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics), 2022, 13536 LNCS : 484 - 496
  • [24] Consolidated Convolutional Neural Network for Hyperspectral Image Classification
    Chang, Yang-Lang
    Tan, Tan-Hsu
    Lee, Wei-Hong
    Chang, Lena
    Chen, Ying-Nong
    Fan, Kuo-Chin
    Alkhaleefah, Mohammad
    REMOTE SENSING, 2022, 14 (07)
  • [25] A Lightweight Convolutional Neural Network for Hyperspectral Image Classification
    Jia, Sen
    Lin, Zhijie
    Xu, Meng
    Huang, Qiang
    Zhou, Jun
    Jia, Xiuping
    Li, Qingquan
    IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2021, 59 (05): : 4150 - 4163
  • [26] A dense convolutional neural network for hyperspectral image classification
    Zhi, Lu
    Yu, Xuchu
    Liu, Bing
    Wei, Xiangpo
    REMOTE SENSING LETTERS, 2019, 10 (01) : 59 - 66
  • [27] Deep Intrinsic Decomposition With Adversarial Learning for Hyperspectral Image Classification
    Gong, Zhiqiang
    Qi, Jiahao
    Zhong, Ping
    Zhou, Xian
    Yao, Wen
    IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2024, 62
  • [28] WEED CLASSIFICATION IN HYPERSPECTRAL REMOTE SENSING IMAGES VIA DEEP CONVOLUTIONAL NEURAL NETWORK
    Farooq, Adnan
    Hu, Jiankun
    Jia, Xiuping
    IGARSS 2018 - 2018 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM, 2018, : 3816 - 3819
  • [29] Deep Feature Extraction and Classification of Hyperspectral Images Based on Convolutional Neural Networks
    Chen, Yushi
    Jiang, Hanlu
    Li, Chunyang
    Jia, Xiuping
    Ghamisi, Pedram
    IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2016, 54 (10): : 6232 - 6251
  • [30] Rocket Image Classification Based on Deep Convolutional Neural Network
    Zhang, Liang
    Chen, Zhenhua
    Wang, Jian
    Huang, Zhaodun
    2018 10TH INTERNATIONAL CONFERENCE ON COMMUNICATIONS, CIRCUITS AND SYSTEMS (ICCCAS 2018), 2018, : 383 - 386