Temperature-Dependent Modeling of Thermoelectric Elements

被引:1
|
作者
Evers, Enzo [1 ]
Slenders, Rens [1 ]
van Gils, Rob [2 ]
Oomen, Tom [1 ]
机构
[1] Eindhoven Univ Technol, Mech Engn Dept, Control Syst Technol, Eindhoven, Netherlands
[2] Philips Innovat Serv, Eindhoven, Netherlands
来源
IFAC PAPERSONLINE | 2020年 / 53卷 / 02期
关键词
Thermal control; Thermo-electric module; Peltier; Application; Modelling;
D O I
10.1016/j.ifacol.2020.12.508
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Active thermal control is crucial in achieving the required accuracy and throughput in many industrial applications, e.g., in the medical industry, high-power lighting industry, and semiconductor industry. Thermoelectric Modules (TEMs) can be used to both heat and cool, alleviating some of the challenges associated with traditional electric heater based control. However, the dynamic behavior of these modules is non-affine in their inputs and state, complicating their implementation. To facilitate advanced control approaches a high fidelity model is required. In this work an approach is presented that increases the modeling accuracy by incorporating temperature dependent parameters. Using an experimental identification procedure, the parameters are estimated under different operating conditions. The resulting model achieves superior accuracy for a wide range of temperatures, demonstrated using experimental validation measurements. Copyright (C) 2020 The Authors.
引用
收藏
页码:8625 / 8630
页数:6
相关论文
共 50 条
  • [21] Temperature-dependent magnetism in artificial honeycomb lattice of connected elements
    Summers, B.
    Debeer-Schmitt, L.
    Dahal, A.
    Glavic, A.
    Kampschroeder, P.
    Gunasekera, J.
    Singh, D. K.
    [J]. PHYSICAL REVIEW B, 2018, 97 (01)
  • [22] TEMPERATURE-DEPENDENT THERMOMECHANICAL MODELING OF SOFT TISSUE DEFORMATION
    Zhang, Jinao
    Hills, Jeremy
    Zhong, Yongmin
    Shirinzadeh, Bijan
    Smith, Julian
    Gu, Chengfan
    [J]. JOURNAL OF MECHANICS IN MEDICINE AND BIOLOGY, 2018, 18 (08)
  • [23] MATHEMATICAL MODELING OF THE TEMPERATURE-DEPENDENT GROWTH OF LIVING SYSTEMS
    Jain, Madhu
    Sharma, G. C.
    Sharma, S. Kumar
    [J]. INTERNATIONAL JOURNAL OF ENGINEERING, 2008, 21 (04): : 319 - 328
  • [24] Temperature-dependent feature sensitivity analysis for combustion modeling
    Zhao, ZW
    Li, J
    Kazakov, A
    Dryer, FL
    [J]. INTERNATIONAL JOURNAL OF CHEMICAL KINETICS, 2005, 37 (05) : 282 - 295
  • [25] Modeling of the temperature-dependent ideal tensile strength of solids
    Cheng, Tianbao
    Li, Weiguo
    Fang, Daining
    [J]. PHYSICA SCRIPTA, 2014, 89 (08)
  • [26] Temperature-Dependent Optical Modeling of Perovskite Solar Cells
    Raja, Waseem
    Allen, Thomas G.
    Said, Ahmed Ali
    Alharbi, Ohoud
    Aydin, Erkan
    De Bastiani, Michele
    De Wolf, Stefaan
    [J]. JOURNAL OF PHYSICAL CHEMISTRY C, 2022, 126 (33): : 14366 - 14374
  • [27] A test of approximations for modeling convection with temperature-dependent viscosity
    Sunder-Plassmann, T
    Christensen, U
    [J]. PHYSICS OF THE EARTH AND PLANETARY INTERIORS, 2000, 120 (1-2) : 103 - 110
  • [28] Mathematical modeling of the temperature-dependent growth of living systems
    Department of Mathematics, Institute of Basic Science Khandari, Agra-282002, India
    [J]. Int. J. Eng. Trans. A Basics, 2008, 4 (319-328): : 319 - 328
  • [29] Quantifying and Modeling the Temperature-Dependent Gating of TRP Channels
    Voets, Thomas
    [J]. REVIEWS OF PHYSIOLOGY, BIOCHEMISTRY AND PHARMACOLOGY, VOL 162, 2012, 162 : 91 - 119
  • [30] Modeling the temperature-dependent solubility of salts in organic solvents
    Schick, Daniel
    Arrad, Mouad
    Figiel, Paul
    Sadowski, Gabriele
    Held, Christoph
    [J]. FLUID PHASE EQUILIBRIA, 2023, 572