Temperature-Dependent Modeling of Thermoelectric Elements

被引:1
|
作者
Evers, Enzo [1 ]
Slenders, Rens [1 ]
van Gils, Rob [2 ]
Oomen, Tom [1 ]
机构
[1] Eindhoven Univ Technol, Mech Engn Dept, Control Syst Technol, Eindhoven, Netherlands
[2] Philips Innovat Serv, Eindhoven, Netherlands
来源
IFAC PAPERSONLINE | 2020年 / 53卷 / 02期
关键词
Thermal control; Thermo-electric module; Peltier; Application; Modelling;
D O I
10.1016/j.ifacol.2020.12.508
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Active thermal control is crucial in achieving the required accuracy and throughput in many industrial applications, e.g., in the medical industry, high-power lighting industry, and semiconductor industry. Thermoelectric Modules (TEMs) can be used to both heat and cool, alleviating some of the challenges associated with traditional electric heater based control. However, the dynamic behavior of these modules is non-affine in their inputs and state, complicating their implementation. To facilitate advanced control approaches a high fidelity model is required. In this work an approach is presented that increases the modeling accuracy by incorporating temperature dependent parameters. Using an experimental identification procedure, the parameters are estimated under different operating conditions. The resulting model achieves superior accuracy for a wide range of temperatures, demonstrated using experimental validation measurements. Copyright (C) 2020 The Authors.
引用
收藏
页码:8625 / 8630
页数:6
相关论文
共 50 条
  • [1] Thermoelectric modules in mechatronic systems: Temperature-dependent modeling and control
    Evers, Enzo
    Slenders, Rens
    van Gils, Rob
    de Jager, Bram
    Oomen, Tom
    [J]. MECHATRONICS, 2021, 79
  • [2] Extraction of the temperature-dependent thermoelectric material parameters of thermoelectric cooler
    Nie S.
    Wang M.
    Gao X.
    Liao J.
    [J]. Harbin Gongye Daxue Xuebao/Journal of Harbin Institute of Technology, 2019, 51 (11): : 68 - 74
  • [3] Temperature-dependent thermoelectric properties of individual silver nanowires
    Kojda, D.
    Mitdank, R.
    Handwerg, M.
    Mogilatenko, A.
    Albrecht, M.
    Wang, Z.
    Ruhhammer, J.
    Kroener, M.
    Woias, P.
    Fischer, S. F.
    [J]. PHYSICAL REVIEW B, 2015, 91 (02)
  • [4] Geometry optimization of a thermoelectric generator with temperature-dependent properties
    Amiri, L.
    Liang, C. -T.
    Narjis, A.
    Alsaad, A.
    [J]. APPLIED PHYSICS A-MATERIALS SCIENCE & PROCESSING, 2024, 130 (06):
  • [5] THE AC ADMITTANCE OF TEMPERATURE-DEPENDENT CIRCUIT ELEMENTS
    BURGESS, RE
    [J]. PROCEEDINGS OF THE PHYSICAL SOCIETY OF LONDON SECTION B, 1955, 68 (10): : 766 - 774
  • [6] Modeling of Temperature-Dependent MOSFET Aging
    Herrera, Fernando Avila
    Miura-Mattausch, Mitiko
    Kikuchihara, Hideyuki
    Iizuka, Takahiro
    Mattausch, Hans Jurgen
    Takatsuka, Hirotaka
    [J]. 2019 INTERNATIONAL CONFERENCE ON SIMULATION OF SEMICONDUCTOR PROCESSES AND DEVICES (SISPAD 2019), 2019, : 235 - 238
  • [7] Performance of Segmented Thermoelectric Cooler Micro-Elements with Different Geometric Shapes and Temperature-Dependent Properties
    Alberto Badillo-Ruiz, Carlos
    Angel Olivares-Robles, Miguel
    Eduardo Ruiz-Ortega, Pablo
    [J]. ENTROPY, 2018, 20 (02):
  • [8] Note: Extraction of temperature-dependent interfacial resistance of thermoelectric modules
    Chen, Min
    [J]. REVIEW OF SCIENTIFIC INSTRUMENTS, 2011, 82 (11):
  • [9] THERMOELECTRIC POWER OF GERMANIUM - EFFECT OF TEMPERATURE-DEPENDENT ENERGY LEVELS
    FREUD, PJ
    ROTHBERG, GM
    [J]. PHYSICAL REVIEW, 1965, 140 (3A): : 1007 - &
  • [10] Modeling of annular thermoelectric generator considering temperature-dependent material properties and side surface heat convection
    Ju, Chengjian
    Xing, Ziyu
    Dui, Guansuo
    Wang, Yajing
    Zhang, Lele
    [J]. JOURNAL OF APPLIED PHYSICS, 2023, 133 (12)