The number of k-SAT functions

被引:5
|
作者
Bollobás, B
Brightwell, GR [1 ]
机构
[1] Univ Memphis, Dept Math Sci, Memphis, TN 38152 USA
[2] Univ Cambridge Trinity Coll, Cambridge CB2 1TQ, England
[3] Univ London London Sch Econ & Polit Sci, Dept Math, London WC2A 2AE, England
关键词
D O I
10.1002/rsa.10079
中图分类号
TP31 [计算机软件];
学科分类号
081202 ; 0835 ;
摘要
We study the number SAT(k; n) of Boolean functions of n variables that can be expressed by a k-SAT formula. Equivalently, we study the number of subsets of the n-cube 2(n) that can be represented as the union of (n - k)-subcubes. In The number of 2-SAT functions (Isr J Math, 133 (2003), 45-60) the authors and Imre Leader studied SAT(k; n) for k less than or equal to n/2, with emphasis on the case k = 2. Here, we prove bounds on SAT(k; n) for k greater than or equal to n/2; we see a variety of different types of behavior. (C) 2003 Wiley Periodicals, Inc.
引用
收藏
页码:227 / 247
页数:21
相关论文
共 50 条
  • [41] A lower bound for DLL algorithms for k-SAT
    Pudlák, P
    Impagliazzo, R
    PROCEEDINGS OF THE ELEVENTH ANNUAL ACM-SIAM SYMPOSIUM ON DISCRETE ALGORITHMS, 2000, : 128 - 136
  • [42] Bounds on Threshold of Regular Random k-SAT
    Rathi, Vishwambhar
    Aurell, Erik
    Rasmussen, Lars
    Skoglund, Mikael
    THEORY AND APPLICATIONS OF SATISFIABILITY TESTING - SAT 2010, PROCEEDINGS, 2010, 6175 : 264 - 277
  • [43] On threshold properties of k-SAT:: An additive viewpoint
    Plagne, Alain
    EUROPEAN JOURNAL OF COMBINATORICS, 2006, 27 (07) : 1186 - 1198
  • [44] Strong refutation heuristics for random k-SAT
    Coja-Oghlan, A
    Goerdt, A
    Lanka, A
    APPROXIMATION, RANDOMIZATION, AND COMBINATORIAL OPTIMIZATION: ALGORITHMS AND TECHNIQUES, PROCEEDINGS, 2004, 3122 : 310 - 321
  • [45] The asymptotic order of the random k-SAT threshold
    Achlioptas, D
    Moore, C
    FOCS 2002: 43RD ANNUAL IEEE SYMPOSIUM ON FOUNDATIONS OF COMPUTER SCIENCE, PROCEEDINGS, 2002, : 779 - 788
  • [46] On Efficiently Solvable Cases of Quantum k-SAT
    Aldi, Marco
    de Beaudrap, Niel
    Gharibian, Sevag
    Saeedi, Seyran
    COMMUNICATIONS IN MATHEMATICAL PHYSICS, 2021, 381 (01) : 209 - 256
  • [47] Satisfiability threshold of the skewed random k-SAT
    Sinopalnikov, DA
    THEORY AND APPLICATIONS OF SATISFIABILITY TESTING, 2005, 3542 : 263 - 275
  • [48] Survey and Belief Propagation on random K-SAT
    Braunstein, A
    Zecchina, R
    THEORY AND APPLICATIONS OF SATISFIABILITY TESTING, 2004, 2919 : 519 - 528
  • [49] On the replica symmetric solution of the K-sat model
    Panchenko, Dmitry
    ELECTRONIC JOURNAL OF PROBABILITY, 2014, 19 : 1 - 17
  • [50] Random k-SAT and the power of two choices
    Perkins, Will
    RANDOM STRUCTURES & ALGORITHMS, 2015, 47 (01) : 163 - 173