Developing activated carbon adsorbents for pre-combustion CO2 capture

被引:47
|
作者
Drage, T. C. [1 ]
Kozynchenko, O. [2 ]
Pevida, C. [3 ]
Plaza, M. G. [3 ]
Rubiera, F. [3 ]
Pis, J. J. [3 ]
Snape, C. E. [1 ]
Tennison, S. [2 ]
机构
[1] Univ Nottingham, Sch Chem & Environm Engn, Nottingham Fuel & Energy Ctr, Nottingham NG7 2RD, England
[2] MAST Carbon Technol, Surrey GU3 2AF, England
[3] CSIC, Inst Nacl Carbon, E-33080 Oviedo, Spain
来源
关键词
CO2; capture; Adsorption; Carbon materials; IGCC; H-2; purification; HYDROGEN;
D O I
10.1016/j.egypro.2009.01.079
中图分类号
TE [石油、天然气工业]; TK [能源与动力工程];
学科分类号
0807 ; 0820 ;
摘要
This paper describes the development of carbon-based adsorbents for CO2 separation in integrated gasification combined cycle (IGCC) processes for energy generation and hydrogen production. The research presented forms part of a Research Fund for Coal and Steel funded project "Hydrogen separation in advanced gasification processes" (HYDROSEP) with the ultimate aim of developing technologies to reduce the costs for the capture of CO2 when compared to existing absorption processes. A range of carbon adsorbents were developed by MAST Carbon. They present significant microporosity and in some cases also meso or macroporosity. CO2 adsorption isotherms have been determined using a dual limb differential pressure apparatus under realistic operating conditions. CO2 and H-2 high pressure adsorption isotherms at room temperature have also been evaluated in a high pressure adsorption balance. Maxima CO2 uptakes of 58 wt.% at 3 MPa and H-2 uptakes of 0.3 wt.% at 4 MPa were obtained. The significant differences observed in CO2 and H-2 adsorption at high pressures showed the high selectivity for CO2 of the tested MAST Carbon adsorbents. (C) 2009 Elsevier Ltd. All rights reserved.
引用
收藏
页码:599 / 605
页数:7
相关论文
共 50 条
  • [31] Elevated Pressure CO2 Adsorption Characteristics of K-promoted Hydrotalcites for Pre-combustion Carbon Capture
    Li, Shuang
    Shi, Yixiang
    Yang, Yi
    Cai, Ningsheng
    GHGT-11, 2013, 37 : 2224 - 2231
  • [32] Development of membrane reactor technology for power production with pre-combustion CO2 capture
    Dijkstra, Jan Wilco
    Pieterse, Johannis A. Z.
    Li, Hui
    Boon, Jurriaan
    van Delft, Yvonne C.
    Raju, Gunabalan
    Peppink, Gerard
    van den Brink, Ruud W.
    Jansen, Daniel
    10TH INTERNATIONAL CONFERENCE ON GREENHOUSE GAS CONTROL TECHNOLOGIES, 2011, 4 : 715 - 722
  • [33] CO2 pre-combustion capture. ELCOGAS' real experience at Puertollano IGCC
    Casero, P.
    Coca, P.
    Garcia, F.
    Hervas, N.
    BOLETIN DEL GRUPO ESPANOL DEL CARBON, 2015, (35): : 2 - 7
  • [34] Pre-combustion, post-combustion and oxy-combustion in thermal power plant for CO2 capture
    Kanniche, Mohamed
    Gros-Bonnivard, Rene
    Jaud, Philippe
    Valle-Marcos, Jose
    Amann, Jean-Marc
    Bouallou, Chakib
    APPLIED THERMAL ENGINEERING, 2010, 30 (01) : 53 - 62
  • [35] Solid sorbents for CO2 capture from post-combustion and pre-combustion gas streams
    Siriwardane, Ranjani V.
    Robinson, Clark
    Stevens, Robert W., Jr.
    ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY, 2007, 233
  • [36] Semiclathrate hydrate process for pre-combustion capture of CO2 at near ambient temperatures
    Zheng, Junjie
    Zhang, Peng
    Linga, Praveen
    APPLIED ENERGY, 2017, 194 : 267 - 278
  • [37] Pre-combustion CO2 capture using ceramic absorbent and methane steam reforming
    Kato, M
    Maezawa, Y
    Takeda, S
    Hagiwara, Y
    Kogo, R
    JOURNAL OF THE CERAMIC SOCIETY OF JAPAN, 2005, 113 (1315) : 252 - 254
  • [38] Pre-combustion CO2 capture by transition metal ions embedded in phthalocyanine sheets
    Lu, Kun
    Zhou, Jian
    Zhou, Le
    Chen, X. S.
    Chan, Siew Hwa
    Sun, Qiang
    JOURNAL OF CHEMICAL PHYSICS, 2012, 136 (23):
  • [39] Pre-combustion CO2 capture using ceramic absorbent and methane steam reforming
    Kato, Masahiro
    Maezawa, Yukishige
    Takeda, Shin
    Hagiwara, Yoshikazu
    Kogo, Ryosuke
    Semba, Katsumi
    Hamamura, Mitsutoshi
    SCIENCE OF ENGINEERING CERAMICS III, 2006, 317-318 : 81 - 84
  • [40] Process Simulation and Economic Analysis of Pre-combustion CO2 Capture With Deep Eutectic Solvents
    Xin, Kun
    Hashish, Mahmoud
    Roghair, Ivo
    van Sint Annaland, Martin
    FRONTIERS IN ENERGY RESEARCH, 2020, 8 (08):