In this work we revisit two classic high-dimensional online learning problems, namely linear regression and contextual bandits, from the perspective of adversarial robustness. Existing works in algorithmic robust statistics make strong distributional assumptions that ensure that the input data is evenly spread out or comes from a nice generative model. Is it possible to achieve strong robustness guarantees even without distributional assumptions altogether, where the sequence of tasks we are asked to solve is adaptively and adversarially chosen? We answer this question in the affirmative for both linear regression and contextual bandits. In fact our algorithms succeed where conventional methods fail. In particular we show strong lower bounds against Huber regression and more generally any convex M-estimator. Our approach is based on a novel alternating minimization scheme that interleaves ordinary least-squares with a simple convex program that finds the optimal reweighting of the distribution under a spectral constraint. Our results obtain essentially optimal dependence on the contamination level eta, reach the optimal breakdown point, and naturally apply to infinite dimensional settings where the feature vectors are represented implicitly via a kernel map.
机构:
Univ. Lyon, ENS de Lyon, UMPA UMR 5669, LIP UMR 5668, Lyon, FranceUniv. Lyon, ENS de Lyon, UMPA UMR 5669, LIP UMR 5668, Lyon, France
Garivier, Aurélien
Hadiji, Hédi
论文数: 0引用数: 0
h-index: 0
机构:
Laboratoire de mathématiques d’Orsay, Université Paris-Saclay, CNRS, Orsay, FranceUniv. Lyon, ENS de Lyon, UMPA UMR 5669, LIP UMR 5668, Lyon, France
Hadiji, Hédi
Ménard, Pierre
论文数: 0引用数: 0
h-index: 0
机构:
Inria Lille Nord Europe, Lille, FranceUniv. Lyon, ENS de Lyon, UMPA UMR 5669, LIP UMR 5668, Lyon, France
Ménard, Pierre
Stoltz, Gilles
论文数: 0引用数: 0
h-index: 0
机构:
Laboratoire de mathématiques d’Orsay, Université Paris-Saclay, CNRS, Orsay, FranceUniv. Lyon, ENS de Lyon, UMPA UMR 5669, LIP UMR 5668, Lyon, France
机构:
Guilin Univ Elect Technol, Sch Math & Comp Sci, Guilin, Peoples R China
Guilin Univ Elect Technol, Sch Math & Comp Sci, Guilin 541004, Peoples R ChinaGuilin Univ Elect Technol, Sch Math & Comp Sci, Guilin, Peoples R China
Lin, Youwu
Xu, Congcong
论文数: 0引用数: 0
h-index: 0
机构:
Guilin Univ Elect Technol, Sch Math & Comp Sci, Guilin, Peoples R ChinaGuilin Univ Elect Technol, Sch Math & Comp Sci, Guilin, Peoples R China
Xu, Congcong
Zhou, Zhaojun
论文数: 0引用数: 0
h-index: 0
机构:
Nanning Normal Univ, Sch Math & Stat, Nanning, Peoples R ChinaGuilin Univ Elect Technol, Sch Math & Comp Sci, Guilin, Peoples R China
Zhou, Zhaojun
Shen, Liang
论文数: 0引用数: 0
h-index: 0
机构:
Qingdao Univ Technol, Dept Stat, Qingdao, Peoples R ChinaGuilin Univ Elect Technol, Sch Math & Comp Sci, Guilin, Peoples R China
Shen, Liang
Huang, Shuai
论文数: 0引用数: 0
h-index: 0
机构:
Guangdong Univ Technol, Sch Management, Guangzhou, Peoples R China
Guangdong Univ Technol, Sch Management, Guangzhou 510520, Peoples R ChinaGuilin Univ Elect Technol, Sch Math & Comp Sci, Guilin, Peoples R China
机构:
Tianjin Univ Technol & Educ, Sch Sci, Tianjin, Peoples R ChinaNankai Univ, Sch Math Sci, LPMC, Tianjin 300071, Peoples R China
Zi, Xuemin
Zou, Changliang
论文数: 0引用数: 0
h-index: 0
机构:
Nankai Univ, Sch Math Sci, LPMC, Tianjin 300071, Peoples R China
Nankai Univ, Sch Math Sci, Dept Stat, Tianjin 300071, Peoples R ChinaNankai Univ, Sch Math Sci, LPMC, Tianjin 300071, Peoples R China
Zou, Changliang
Tsung, Fugee
论文数: 0引用数: 0
h-index: 0
机构:
Hong Kong Univ Sci & Technol, Dept Ind Engn & Logist Management, Hong Kong, Hong Kong, Peoples R China
Hong Kong Univ Sci & Technol, Qual Lab, Hong Kong, Hong Kong, Peoples R ChinaNankai Univ, Sch Math Sci, LPMC, Tianjin 300071, Peoples R China